已知函數(shù)f(x)=x3-3x2+1,g(x)=
(x-
1
2
)2+1(x>0)
-(x+3)2+1(x≤0)
,則方程g[f(x)]-a=0(a為正實(shí)數(shù))的實(shí)數(shù)根最多有
6
6
個(gè).
分析:先在同一個(gè)坐標(biāo)系中,分別作出函數(shù)f(x)和g(x)的圖象,如圖所示.方程g[f(x)]-a=0,即方程g[f(x)]=a,
令f(x)=m,則函數(shù)y=f(x)的圖象可知,方程f(x)=m最多有三個(gè)實(shí)數(shù)根,且當(dāng)-3<m<1時(shí),方程f(x)=m有三個(gè)實(shí)數(shù)根,另外,由函數(shù)y=g(x)的圖象可知,方程g(n)=a最多有兩個(gè)實(shí)數(shù)根.取a=
10
9
,從而g[f(x)]=a的實(shí)數(shù)根最多有 6個(gè).
解答:解:在同一個(gè)坐標(biāo)系中,分別作出函數(shù)f(x)和g(x)的圖象,如圖所示.
方程g[f(x)]-a=0,即方程g[f(x)]=a,
令f(x)=m,則函數(shù)y=f(x)的圖象可知,方程f(x)=m最多有三個(gè)實(shí)數(shù)根,且當(dāng)-3<m<1時(shí),方程f(x)=m有三個(gè)實(shí)數(shù)根,
另外,由函數(shù)y=g(x)的圖象可知,方程g(n)=a最多有兩個(gè)實(shí)數(shù)根.
取a=
10
9
,令g(n)=
10
9
,則函數(shù)y=g(x)的圖象可知,方程g(n)=
10
9
有兩個(gè)實(shí)數(shù)根,且此兩個(gè)實(shí)數(shù)根均在區(qū)間(0,1)上,
從而g[f(x)]=
10
9
有六個(gè)實(shí)數(shù)根,且是最多的.
故答案為:6.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,考查數(shù)形結(jié)合思想.其中分析內(nèi)外函數(shù)的圖象是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省東陽(yáng)中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年河南省許昌市長(zhǎng)葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說(shuō)法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案