14.已知{an}是等比數(shù)列,a1=2,a4=16,則數(shù)列{an}的公比q等于( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:由等比數(shù)列的性質(zhì)可得:a4=${a}_{1}{q}^{3}$,∴16=2q3,解得q=2.
故選:A.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知?jiǎng)訄AP與圓$E:{({x+\sqrt{3}})^2}+{y^2}=25$相切,且與圓$F:{({x-\sqrt{3}})^2}+{y^2}=1$都內(nèi)切,記圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)直線l與曲線C交于點(diǎn)A,B,點(diǎn)M為線段AB的中點(diǎn),若|OM|=1,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知$\sqrt{3}$acosB=bsinA.
(1)求角B的大;
(2)若△ABC的面積S=$\frac{\sqrt{3}}{4}$b2,求$\frac{a}{c}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題是真命題的為(  )
A.?x∈R,2x>1B.?x∈R,x2>0C.?x∈R,2x<1D.?x∈R,x2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
組別分組頻數(shù)頻率
第1組[50,60)80.16
第2組[60,70)a
第3組[70,80)200.40
第4組[80,90)0.08
第5組[90,100]2b
合計(jì)
(1)寫出a,b,x,y的值.
(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng).
①求所抽取的2名同學(xué)中至少有1名同學(xué)的成績(jī)?cè)赱90,100]內(nèi)的概率;
②求所抽取的2名同學(xué)來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若關(guān)于x的一元二次方程x2+ax-2=0有兩個(gè)不相等的實(shí)根x1,x2,且x1<-1,x2>1,則實(shí)數(shù)a的取值范圍是( 。
A.a<-1B.a>1C.-1<a<1D.a>2$\sqrt{2}$或a<-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a>b,c∈R,則( 。
A.$\frac{1}{a}$<$\frac{1}$B.|a|>|b|C.a3>b3D.ac>bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)=\frac{{\;{2^x}}}{{\sqrt{1-x}}}+{log_3}(2x-1)$的定義域是( 。
A.$(\frac{1}{2}\;,\;1)$B.$[\frac{1}{2}\;,\;1)$C.(1,+∞)D.$(\frac{1}{2},\;1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=\sqrt{3}sin2x-2{cos^2}x$.
(1)求$f(\frac{π}{6})$的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案