選修4一5:不等式選講
設(shè)函數(shù)f (x)=|x-a|+3x,其中a≠0.
(1)當(dāng)a=2時(shí),求不等式f(x)≥3x+2的解集;
(2)若不等式f (x)≤0的解集包含{x|x≤-1},求a的取值范圍.
【答案】分析:(1)當(dāng)a=2時(shí),函數(shù)f (x)=|x-2|+3x,不等式即|x-2|+3x≥3x+2,即|x-2|≥2,由此求得它的解集.
(2)由不等式可得|x-a|≤-3x,即 ,或 .分a大于零和a小于零兩種情況,分別求得不等式組的解集,再根據(jù)f (x)≤0的解集包含{x|x≤-1},求得a的范圍.
解答:解:(1)當(dāng)a=2時(shí),函數(shù)f (x)=|x-a|+3x=|x-2|+3x,
不等式f(x))≥3x+2,即|x-2|+3x≥3x+2,即|x-2|≥2,
∴x-2≥2,或 x-2≤-2.即 x≥4,或 x≤0,故f(x))≥3x+2的解集為{x|x≥4,或 x≤0}.
(2)由不等式f (x)≤0,可得|x-a|≤-3x,即 ,或 
由于a≠0,
①若a>0,則不等式組的解集為 {x|x≤-}.
由f (x)≤0的解集包含{x|x≤-1},可得-≥-1,求得 0<a≤2.
②若a<0,則不等式組的解集為 {x|x≤},
由f (x)≤0的解集包含{x|x≤-1},可得 ≥-1,求得-4≤a<0.
綜上可得,a的取值范圍為{a|0<a≤2,或-4≤a<0 }.
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,集合間的包含關(guān)系,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將選題號(hào)填入括號(hào)中.
(1)選修4一2:矩陣與變換
求矩陣A=
2,1
3,0
的特征值及對(duì)應(yīng)的特征向量.
(2)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線l和圓C的位置關(guān)系.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)選修4一5:不等式選講
設(shè)函數(shù)f (x)=|x-a|+3x,其中a≠0.
(1)當(dāng)a=2時(shí),求不等式f(x)≥3x+2的解集;
(2)若不等式f (x)≤0的解集包含{x|x≤-1},求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將選題號(hào)填入括號(hào)中.
(1)選修4一2:矩陣與變換
設(shè)矩陣M所對(duì)應(yīng)的變換是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應(yīng)的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)當(dāng)α=
π
3
時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實(shí)數(shù),且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌縣一模)選修4一5:不等式選講
設(shè)函數(shù)f(x)=|x-1|+|x-a|.
(I)若a=-1,解不等式,f(x)≥3;
(II)如果對(duì)于任意實(shí)數(shù)x,恒有f(x)≥2成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鄭州二模)選修4一5:不等式選講
設(shè)函數(shù)f(x)=|2x-a|+5x,其中a>0.
(Ⅰ)當(dāng)a=3時(shí),求不等式f(x)≥5x+1的解集;
(Ⅱ)若不等式f(x)≤0的解集為{x|x≤-1},求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案