3.拋物線x2=y上的點(2,4)到其焦點的距離為( 。
A.$\frac{9}{4}$B.$\frac{17}{4}$C.$\frac{5}{2}$D.$\frac{9}{2}$

分析 先根據(jù)拋物線的方程求得準線的方程,進而利用點A的縱坐標求得點(2,4)到準線的距離,進而根據(jù)拋物線的定義求得答案.

解答 解:依題意可知拋物線的準線方程為y=-$\frac{1}{4}$,
∴點(2,4)到準線的距離為4+$\frac{1}{4}$=$\frac{17}{4}$,
根據(jù)拋物線的定義可知點(2,4)與拋物線焦點的距離就是點(2,4)與拋物線準線的距離,
∴點(2,4)與拋物線焦點的距離為$\frac{17}{4}$,
故選:B.

點評 本題主要考查了拋物線的定義的運用.考查了學(xué)生對拋物線基礎(chǔ)知識的掌握.屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=4,an+2an+1=6,則a4=$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在空間直角坐標系中,以點A(4,1,9)和B(10,-1,6)為端點的線段長是( 。
A.49B.45C.7D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,AB=$\sqrt{3}$,AC=1,∠B=30°,
(1)求角C
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.f(x)=x2+3xB.y=(x-1)2C.g(x)=2-xD.y=log0.5(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.經(jīng)過點M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長為4$\sqrt{5}$,則直線l的方程為  ( 。
A.x-2y+9=0或x+2y+3=0B.2x-y+9=0或2x+y+3=0
C.x+2y+3=0或x-2y+9=0D.x+2y+9=0或2x-y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一箱電子產(chǎn)品有6件,其中2件次品,4件正品,現(xiàn)不放回地進行抽檢,每次抽檢一件,直到檢驗出所有次品為止,那么抽檢次數(shù)X的數(shù)學(xué)期望為( 。
A.$\frac{14}{3}$B.$\frac{13}{3}$C.3D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知:向量$\overrightarrow{m}$=(cosx,$\sqrt{3}$sinx),$\overrightarrow{n}$=(2cosx,2cosx),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求y=f(x)對稱中心坐標;
(Ⅱ)求y=f(x)在($\frac{π}{12}$,$\frac{7π}{12}$)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.利用計算機在區(qū)間(0,1)上產(chǎn)生隨機數(shù)a,則不等式0<log2(3a-1)<1成立的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案