一個空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
6
5
πcm3
B、3πcm3
C、
2
3
πcm3
D、
7
3
πcm3
考點:由三視圖求面積、體積
專題:計算題
分析:由三視圖可知,此幾何體為底面半徑為1 cm、高為3 cm的圓柱上部去掉一個半徑為1 cm的半球,據(jù)此可計算出體積.
解答: 解:由三視圖可知,此幾何體為底面半徑為1 cm、高為3 cm的圓柱上部去掉一個半徑為1 cm的半球,
所以其體積為V=πr2h-
2
3
πr3=3π-
2
3
π=
7
3
π(cm3).
故選D.
點評:本題考查了由三視圖求幾何體的體積,解題的關(guān)鍵是判斷幾何體的形狀及三視圖的數(shù)據(jù)所對應(yīng)的幾何量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個數(shù)字模糊,無法確認,假設(shè)這個數(shù)字具有隨機性,并在圖中以a表示.
(Ⅰ)若甲、乙兩個小組的數(shù)學(xué)平均成績相同,求a的值;
(Ⅱ)求乙組平均成績超過甲組平均成績的概率;
(Ⅲ)當(dāng)a=2時,分別從甲、乙兩組同學(xué)中各隨機選取一名同學(xué),求這兩名同學(xué)的數(shù)學(xué)成績之差的絕對值不超過2分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sinx(cosx-sinx),其中x∈R,
(1)求函數(shù)f(x)的最小正周期,并指出函數(shù)y=sin2x的圖象如何變換成y=f(x)的圖象;(要求變換的先后順序)
(2)在△ABC中角A,B,C對應(yīng)邊分別為a,b,c,f(A)=0,b=4,S△ABC=6,求a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P(x,y)為平面上以A(4,0),B(0,4),C(1,2)為頂點的三角形區(qū)域(包括邊界)上一動點,O為原點,且
OP
=λ
OA
+μ
OB
,則λ+μ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-2y+5=0上方的平面區(qū)域的不等式表示為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
=
c
,
AC
=
b
.若點D滿足
BD
=3
DC
,則
AD
=( 。
A、-
3
4
b
+
7
4
c
B、
3
4
b
-
1
4
c
C、
3
4
b
+
1
4
c
D、
1
4
b
+
3
4
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A為y軸上異于原點O的定點,過動點P作x軸的垂線交x軸于點B,動點P滿足|
PA
+
PO
|=2|
PB
|
,則點P的軌跡為( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點A(1,3),AB邊上的中線所在直線的方程是y=1,AC邊上的高所在直線的方程是x-2y+1=0,求:
(1)BC邊所在直線的方程;
(2)AB邊所在直線的方程.

查看答案和解析>>

同步練習(xí)冊答案