(12分)如圖,已知正方形ABCD和矩形ACEF所在平面垂直,是線段EF的中點(diǎn)。
(Ⅰ)求證:
(Ⅱ)求二面角
解析:(方法一)證明:設(shè)BD交AC于點(diǎn)O,連接MO,OF
因?yàn)樗倪呅蜛BCD是正方形
所以AC⊥BD,AO=CO
又因?yàn)榫匦蜛CEF,EM=FM,
所以MO⊥AO
因?yàn)檎叫蜛BCD和矩形ACEF所
在平面垂直
平面ABCD平面ACEF=AC
所以MO⊥平面ABCD
所以AM⊥BD
在,
所以BD=
所以AO=1,
所以四邊形OAFM是正方形,所以AM⊥OF
因?yàn)?IMG height=23 src='http://thumb.zyjl.cn/pic1/img/20090529/20090529172314005.gif' width=237> …………………6分
(Ⅱ)設(shè)AM、OF相交于Q,過A作AR⊥DF于R,連接QR,因?yàn)锳M⊥平面BDF,
所以QR⊥DF,則∠ARQ為二面角A―DF―B的平面角…………………9分
Rt△ADF中,AF=1,AD=,所以
Rt△AQR中,QR
所以二面角A―DF―B的余弦值為 ………………………12分
(方法二)以C為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系C―xyz,連接BD則A(,,0),B(0,,0)。
D(,0,0)
F(,,1),M(,,1)
所以
所以
所以所以AM⊥平面BDF…………6分
(Ⅱ)平面ADF的法向量為
平面BDF的法向量………………8分
……………………11分
所以二面角A―DF―B的余弦值為。 ……………………12分年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
MN |
BN |
| ||
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
2 |
ME |
FM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
5 |
6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com