【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點(diǎn).
(1)求證:MN⊥CD;
(2)若∠PDA=45°,求證:MN⊥平面PCD.
【答案】見解析
【解析】證明:(1)如圖所示,取PD的中點(diǎn)E,連接AE、NE,
∵N為PC的中點(diǎn),E為PD的中點(diǎn),∴NE∥CD且NE=CD,而AM∥CD
且AM=AB=CD,∴NE∥AM且NE=AM,∴四邊形AMNE為平行四邊形,
∴MN∥AE.又PA⊥平面ABCD,∴PA⊥CD,又∵ABCD為矩形,∴AD⊥CD,又AD∩PA=A,∴CD⊥平面PAD,∴CD⊥AE,又AE∥MN,∴MN⊥CD.
(2)由(1)可知CD⊥AE,MN∥AE.又∠PDA=45°,∴△PAD為等腰直角三角形,
又E為PD的中點(diǎn),∴AE⊥PD,∴AE⊥平面PCD. 又AE∥MN,∴MN⊥平面PCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在髙三的全體名學(xué)生中隨機(jī)抽取了名學(xué)生的體檢表,并得到如圖的頻率分布直方圖.
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計(jì)全年級(jí)視力在以下的人數(shù);
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對(duì)年級(jí)名次在名和名的學(xué)生進(jìn)行了調(diào)查,得到表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否有的把握認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
(3)在(2)中調(diào)查的名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,求在這人中任取人,恰好有人的年級(jí)名次在名的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大利潤,其最大收
益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以橢圓:的中心為圓心,為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓的左頂點(diǎn)為,左焦點(diǎn)為,上頂點(diǎn)為,且滿足,.
(1)求橢圓及其“準(zhǔn)圓”的方程;
(2)若橢圓的“準(zhǔn)圓”的一條弦(不與坐標(biāo)軸垂直)與橢圓交于、兩點(diǎn),試證明:當(dāng)時(shí),試問弦的長是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家具廠生產(chǎn)一種課桌,每張課桌的成本為50元,出廠單價(jià)為80元,該廠為鼓勵(lì)銷售商多訂購,決定一次訂購量超過100張時(shí),每超過一張,這批訂購的全部課桌出廠單價(jià)降低0.02元.根據(jù)市場調(diào)查,銷售商一次訂購量不會(huì)超過1000張.
(Ⅰ)設(shè)一次訂購量為張,課桌的實(shí)際出廠單價(jià)為元,求關(guān)于的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)一次性訂購量為多少時(shí),該家具廠這次銷售課桌所獲得的利潤最大?其最大利潤是多少元?(該家具廠出售一張課桌的利潤=實(shí)際出廠單價(jià)-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,C.已知3cos(B-C)-1=6cosBcosC.
(1)求cosA;
(2)若a=3,△ABC的面積為2 ,求b,C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,點(diǎn)在底面上的射影為線段的中點(diǎn).
(1)若為棱的中點(diǎn),求證:平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題關(guān)于的不等式的解集是,命題函數(shù)的定義域?yàn)?/span>.
(1)如果為真命題,求實(shí)數(shù)的取值范圍;
(2)如果為真命題, 為假命題, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合P={x|y=x2},集合Q={y|y=x2},則P與Q的關(guān)系為( )
A.PQ
B.QP
C.P=Q
D.以上都不正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com