分析 f($\frac{1}{27}$)=$lo{g}_{9}\frac{1}{27}$=-$\frac{3}{2}$,即可求出f(f($\frac{1}{27}$))=${4}^{-\frac{3}{2}}$=$\frac{1}{8}$;利用f(f(x0))≥$\frac{1}{2}$,結合分段函數,即可求出當f(f(x0))≥$\frac{1}{2}$時x0的取值范圍.
解答 解:f($\frac{1}{27}$)=$lo{g}_{9}\frac{1}{27}$=-$\frac{3}{2}$,∴f(f($\frac{1}{27}$))=${4}^{-\frac{3}{2}}$=$\frac{1}{8}$,
${4}^{x}≥\frac{1}{2}$,0≥x≥-$\frac{1}{2}$,∴0≥$lo{g}_{9}{x}_{0}≥-\frac{1}{2}$,∴$\frac{1}{3}≤{x}_{0}≤1$;
x>0時,$lo{g}_{9}x≥\frac{1}{2}$,∴x≥3,log9x0≥3,∴x0≥729,
綜上所述,f(f(x0))≥$\frac{1}{2}$時x0的取值范圍是[$\frac{1}{3}$,1]∪[729,+∞).
故答案為$\frac{1}{8}$,[$\frac{1}{3}$,1]∪[729,+∞).
點評 本題考查分段函數,考查學生的計算能力,正確理解分段函數是關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{2}{9}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4\sqrt{2}-7}{9}$ | B. | $\frac{-4\sqrt{2}-7}{9}$ | C. | $\frac{4-7\sqrt{2}}{9}$ | D. | $\frac{-4-7\sqrt{2}}{9}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com