20.已知集合M={x|x2+3x<4},N={-2,-1,0,1,2},則M∩N=( 。
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-2,-1,0}D.{-1,0,1,2}

分析 化簡集合M,根據(jù)交集的定義寫出M∩N.

解答 解:集合M={x|x2+3x<4}={x|x2+3x-4<0}={x|-4<x<1},N={-2,-1,0,1,2},
則M∩N={-2,-1,0}.
故選:C.

點(diǎn)評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.球面面積等于它的大圓面積的( 。┍叮
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,$(2\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,則向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影為( 。
A.-$\frac{5}{3}$B.$\frac{5}{4}$C.$-\frac{5}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)P是拋物線C1:y2=4x上的動點(diǎn),過P作圓(x-3)2+y2=2的兩條切線,則兩條切線的夾角的最大值為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知正數(shù)x、y滿足:2x+y-xy=0,則x+2y的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知 f(x)、g(x)都是定義在 R 上的函數(shù),g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=ax g(x),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,則關(guān)于x的方程abx2+$\sqrt{2}$x+2=0(b∈(0,1))有兩個不同實根的概率為(  )
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x|-2<x<1},B={x|0<x<2},則集合A∪B=(  )
A.{x|-1<x<1}B.{x|-2<x<2}C.{x|0<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.冪函數(shù)f(x)=xm是偶函數(shù),在x∈(0,+∞)為增函數(shù),則m的值為(2)(3)
(1)-1;(2)2;(3)4;(4)-1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=[x],其中[x]表示不超過x的最大整數(shù),例如[-3.5]=-4,[2.1]=2,給定以下結(jié)論:
①函數(shù)y=f(x)與y=x-1的圖象無交點(diǎn);
②函數(shù)y=f(x)與y=lg|x|的圖象只有一個交點(diǎn);
③函數(shù)y=f(x)與y=2x-1的圖象有兩個交點(diǎn);
④函數(shù)y=|f(x)|與y=x2的圖象有三個交點(diǎn).
其中正確的有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

同步練習(xí)冊答案