函數(shù)y=tan(2x+數(shù)學(xué)公式)的一個單調(diào)區(qū)間是


  1. A.
    (-數(shù)學(xué)公式,數(shù)學(xué)公式
  2. B.
    (-數(shù)學(xué)公式,數(shù)學(xué)公式
  3. C.
    (-數(shù)學(xué)公式,0)
  4. D.
    (-數(shù)學(xué)公式,數(shù)學(xué)公式
B
分析:由y=tanx的單調(diào)遞增區(qū)間為()(k∈Z)要求y=tan(2x+)的單調(diào)遞增區(qū)間,可令即可求其的單調(diào)遞增區(qū)間,結(jié)合 選項(xiàng)可求
解答:∵y=tanx的單調(diào)遞增區(qū)間為()(k∈Z),
(k∈Z),
解可得,,k∈Z
當(dāng)k=0時,可得函數(shù)的一個單調(diào)遞增區(qū)間是(-
故選B
點(diǎn)評:本題考查正切函數(shù)的單調(diào)性,著重考查學(xué)生整體代換的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:
①函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
②函數(shù)y=tan(
π
4
-2x)
的最小正周期是π;
③函數(shù)y=tan(2x-
π
3
)
的圖象關(guān)于點(diǎn)(-
3
,0)
成中心對稱;
④函數(shù)y=tan(2x-
π
3
)
(-
π
12
12
)
上單調(diào)遞增
其中正確的命題個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=tan(2x+
π
6
)的周期是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=tan(2x+φ)的最小正周期是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x=
2
(-1≤k≤1)與函數(shù)y=tan(2x+
π
4
)的圖象不相交,則k=(  )
A、
1
4
B、-
3
4
C、
1
4
或-
3
4
D、-
1
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=tan(2x-
π
3
),下列說法正確的是( 。
A、是奇函數(shù)
B、最小正周期為π
C、(
π
6
,0)為圖象的一個對稱中心
D、其圖象由y=tan2x的圖象右移
π
3
單位得到

查看答案和解析>>

同步練習(xí)冊答案