10.若集合A={x∈R|x2-kx+1=0}中只有一個(gè)元素,則k=±2.

分析 根據(jù)條件即可得出一元二次方程x2-kx+1=0只有一個(gè)解,從而得出△=0,這樣即可求出k的值.

解答 解:集合A只有一個(gè)元素;
∴一元二次方程x2-kx+1=0有二等根;
∴△=k2-4=0;
∴k=±2.
故答案為:±2.

點(diǎn)評(píng) 考查描述法表示集合的概念及表示形式,一元二次方程實(shí)根的情況和判別式△取值的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對(duì)邊,且滿足(2c-b)cosA=acosB
(1)求A的大;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題中,真命題是( 。
A.命題“若|a|>b,則a>b”
B.命題“若a=b,則|a|=|b|”的逆命題
C.命題“當(dāng)x=2時(shí),x2-5x+6=0”的否命題
D.命題“終邊相同的角的同名三角函數(shù)值相等”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$cosα=\frac{1}{3},cos(α+β)=-\frac{1}{3}$,且$α,β∈(0,\frac{π}{2})$,則cosβ=( 。
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知方程$\frac{{x}^{2}}{k-5}$-$\frac{{y}^{2}}{|k|-2}$=1表示雙曲線,那么k的取值范圍是( 。
A.k>5B.-2<k<2C.k>2或k<-2D.k>5或-2<k<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求符合下列條件的雙曲線的標(biāo)準(zhǔn)方程
(1)焦點(diǎn)在x軸上,頂點(diǎn)間的距離為6,漸近線方程為y=±$\frac{1}{3}x$
(2)與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1共焦點(diǎn),它們的離心率之和為$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.按下圖所示的程序框圖運(yùn)算,若輸入x=8,則輸出k=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若α,β為銳角,且滿足cosα=$\frac{4}{5}$,cos(α+β)=$\frac{5}{13}$,則sinβ的值為( 。
A.-$\frac{16}{65}$B.$\frac{33}{65}$C.$\frac{56}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.集合{x,y,z}的子集個(gè)數(shù)為8.

查看答案和解析>>

同步練習(xí)冊(cè)答案