分析 取BD中點O,連結EO、FO,推導出EO=FO=1,$∠EOF=\frac{π}{3}$,或$∠EOF=\frac{2π}{3}$,由此能求出EF.
解答 解取BD中點O,連結EO、FO,
∵四面體ABCD中,AB=CD=2,E、F分別為BC、AD的中點,且異面直線AB與CD所成的角為$\frac{π}{3}$,
∴EO∥CD,且EO=$\frac{1}{2}CD=1$,F(xiàn)O∥AB,且FO=$\frac{1}{2}AB$=1,
∴∠EOF是異面直線AB與CD所成的角,
∴$∠EOF=\frac{π}{3}$,或$∠EOF=\frac{2π}{3}$,
當∠EOF=$\frac{π}{3}$時,△EOF是等邊三角形,∴EF=1.
當$∠EOF=\frac{2π}{3}$時,EF=$\sqrt{{1}^{2}+{1}^{2}-\frac{1}{2}×1×1×cos\frac{2π}{3}}$=$\sqrt{3}$.
故答案為:1或$\sqrt{3}$.
點評 本題考查線段長的示法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4030}{4031}$ | B. | $\frac{2014}{4029}$ | C. | $\frac{2015}{4031}$ | D. | $\frac{4029}{4031}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{12}{5}$ | B. | $-\frac{12}{5}$ | C. | $\frac{5}{12}$ | D. | $-\frac{5}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com