化簡
2cos2α-1
2tan(
π
4
-α)sin2(
π
4
+α)
等于
1
1
分析:利用二倍角公式將將三角函數(shù)化簡,即可得到結(jié)論.
解答:解:
2cos2α-1
2tan(
π
4
-α)sin2(
π
4
+α)
=
cos2α
2sin(
π
4
-α)cos(
π
4
-α)
=
cos2α
sin(
π
2
-2α)
=
cos2α
cos2α
=1
故答案為:1
點(diǎn)評(píng):本題考查三角函數(shù)的化簡,解題的關(guān)鍵是正確利用二倍角公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)

(2)計(jì)算
1
2
lg25+lg2-lg
0.1
-log29×log32
;
(3)
-1
=i
,驗(yàn)算i是否方程2x4+3x3-3x2+3x-5=0的解;
(4)求證:
sin(
π
4
+θ)
sin(
π
4
-θ)
+
cos(
π
4
+θ)
cos(
π
4
-θ)
=
2
cos2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)
2
sin(
π
4
-x)+
6
cos(
π
4
-x)
;
(2)
2cos2α-1
2tan(
π
4
-α)sin2(
π
4
+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
2cos2α
sin2α
1-cos2α
cos2α
的結(jié)果為( 。
A、tanα
B、tan2α
C、
1
tan2α
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2
ωx
2
+sinωx-1(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,且在△ABC中AB=AC=
6

(1)化簡該函數(shù)表示式,并求出該函數(shù)的值域;
(2)求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(1+sinα)[
3cosα
2cos2(
π
4
-
α
2
)
-2tan(
π
4
-
α
2
)]
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案