16.若下列關(guān)于x的方程x2+4ax-4a+3=0(a為常數(shù)),x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一個(gè)方程有實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
A.$({-\frac{3}{2},-1})$B.$({-∞,-\frac{3}{2}}]∪[{-1,+∞})$C.(-2,0)D.$({-∞,-\frac{3}{2}}]∪[{0,+∞})$

分析 本題研究的三個(gè)方程至少有一個(gè)有實(shí)根,此類題求解時(shí)通常轉(zhuǎn)化為求其對立面,研究三個(gè)方程都沒有實(shí)根時(shí)實(shí)數(shù)a的取值集合,其補(bǔ)集即是所求的實(shí)數(shù)a的取值范圍

解答 解:不妨假設(shè)三個(gè)方程都沒有實(shí)數(shù)根,則有$\left\{\begin{array}{l}{16{a}^{2}+16a-12<0}\\{(a-1)^{2}-4{a}^{2}<0}\\{4{a}^{2}+8a<0}\end{array}\right.$解得-$\frac{3}{2}$<a<-1
故三個(gè)方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一個(gè)方程有實(shí)根時(shí),實(shí)數(shù)a的取值范圍為a≤-$\frac{3}{2}$或a≥-1
故選:B

點(diǎn)評 本題考查一元二次方程的根的分布與系數(shù)的關(guān)系,求解本題關(guān)鍵是理解題意“至少有一個(gè)方程有實(shí)根”,此題若從正面求解需要分的情況較多,不易解答,而對立面易求解,故采取了求三個(gè)方程都沒有實(shí)數(shù)根時(shí)參數(shù)的取值范圍,再求其補(bǔ)集得出答案,此解法應(yīng)用了反證法的思想,其規(guī)律稱為正難則反,解題是題設(shè)中出現(xiàn)了“至多”,“至少”這樣的字樣時(shí),要注意使用本題這樣的解法技巧.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a=sin147°,b=cos55°,c=tan215°,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,過點(diǎn)A(6,4)作曲線f(x)=$\sqrt{4x-8}$的切線l.
(1)求切線l的方程;
(2)求切線l、x軸及曲線f(x)=$\sqrt{4x-8}$所圍成的封閉圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f'(x)是函數(shù)f(x)(x∈R且x≠0)的導(dǎo)函數(shù),當(dāng)x>0時(shí),xf'(x)-f(x)<0,記a=$\frac{{f({{2^{0.2}}})}}{{{2^{0.2}}}},b=\frac{{f({{{0.2}^2}})}}{{{{0.2}^2}}},c=\frac{{f({{{log}_2}5})}}{{{{log}_2}5}}$,則( 。
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)為定義在(0,+∞)上的連續(xù)可導(dǎo)函數(shù),且f(x)>xf'(x),則不等式${x^2}f(\frac{1}{x})-f(x)<0$的解集是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓E:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,求E的焦距、離心率和通徑的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,且點(diǎn)$(\sqrt{3},\frac{1}{2})$在橢圓C上.橢圓C的左頂點(diǎn)為A.
(1)求橢圓C的方程;
(2)過點(diǎn)A作直線l與橢圓C交于另一點(diǎn)B.若直線l交y軸于點(diǎn)C,且OC=BC,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=ex-ax-1
(1)若函數(shù)f(x)在R上單調(diào)遞增,求α的取值范圍;
(2)當(dāng)α>0時(shí),設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),右焦點(diǎn)為F(c,0),A(0,2),且|AF|=$\sqrt{7}$,橢圓C的離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程為y=kx+m,當(dāng)直線l與橢圓C有唯一公共點(diǎn)M時(shí),作OH⊥l于H(O為坐標(biāo)原點(diǎn)),若|MH|=$\frac{3}{5}$|OM|,求k的值.

查看答案和解析>>

同步練習(xí)冊答案