【題目】已知全集為實(shí)數(shù)集R,集合A={x|y= + },B={x|2x>4}
( I)分別求A∪B,A∩B,(UB)∪A
( II)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值范圍.
【答案】解:( I)全集為實(shí)數(shù)集R,集合A={x|y= + },B={x|2x>4}
∵ ,
∴1≤x≤3,
故得集合A={x|1≤x≤3},
∵2x>4,
∴x>2
故得集合B={x|x>2},
UB═{x|x≤2},
∴A∪B={x|1≤x}
A∩B={x|3≥x>2}
(UB)∪A═{x|x≤3},
(Ⅱ)集合C={x|1<x<a},
∵CA,
當(dāng)c=時(shí),滿足題意,此時(shí)a≤1.
當(dāng)c≠時(shí),要使CA成立,
則需 ,
即1<a≤3
故得實(shí)數(shù)a的取值范圍(1,3]
【解析】( I)化簡集合A,B,根據(jù)集合的基本運(yùn)算即可求A∪B,A∩B,(UB)∪A( II)根據(jù)CA,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】掌握交、并、補(bǔ)集的混合運(yùn)算是解答本題的根本,需要知道求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},則B=( )
A.{0,1,2,3,4}
B.{0,1,2}
C.{0,2,4}
D.{1,2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,已知向量m = (cosA,cosB),n = (b + 2c,a),且m⊥n.
(1)求角A的大。
(2)若a = 4,b + c = 8,求AC邊上的高h(yuǎn)的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中, 是橢圓的左、右焦點(diǎn),過作直線交橢圓于兩點(diǎn),若的周長為8,離心率為.
(1)求橢圓方程;
(2)若弦的斜率不為0,且它的中垂線與軸交于,求的縱坐標(biāo)的范圍;
(3)是否在軸上存在點(diǎn),使得軸平分?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
( I)判斷f(x)的奇偶性;
( II)求證:f(x)+f( )為定值;
(III)求 + + +f(1)+f(2015)+f(2016)+f(2017)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系中,曲線的參數(shù)方程為: (為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與曲線的普通方程;
(2)若用代換曲線的普通方程中的得到曲線的方程,若分別是曲線和曲線上的動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣a)2lnx(a為常數(shù)).
(1)若f(x)在(1,f(1))處的切線與直線2x+2y﹣3=0垂直.
(。┣髮(shí)數(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x﹣1)的大小;
(2)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無極值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com