3.經(jīng)過(-1,2)且與直線x+y-1=0垂直的直線是(  )
A.x-y+1=0B.x-y+3=0C.x+y+1=0D.x+y+3=0

分析 由題意和垂直關系可得直線的斜率,可得點斜式方程,化為一般式即可.

解答 解:∵直線x+y-1=0的斜率為-1,
∴所求垂線的斜率為1,
∴方程為y-2=x-(-1),
∴x-y+3=0,
故選:B.

點評 本題考查直線的一般式方程和垂直關系,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中,值域為(0,+∞)的是(  )
A.$y=\sqrt{x}$B.y=2|x|C.y=x2+x+1D.y=2-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.不用計算器求下列各式的值
(1)${log_3}\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$
(2)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.A={x||x|<1},B={x|x>a},且A∩B=∅,則a的取值范圍a≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知e是自然對數(shù)的底數(shù),函數(shù)f(x)的定義域為R,2f(x)•2f′(x)>2,f(0)=27${\;}^{\frac{2}{3}}$-2${\;}^{lo{{g}_{2}}{3}}$×log2$\frac{1}{8}$+2lg($\sqrt{3+\sqrt{5}}$+$\sqrt{3-\sqrt{5}}$)-11,則不等式$\frac{f(x)-1}{{e}^{ln7-x}}$>1的解集為( 。
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知某三棱錐的三視圖是如圖所示的三個直角三角形,那么這個三棱錐最小的一個表面的面積是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長為4.若以原點為圓心、橢圓短半軸長為半徑的圓與直線y=x+2相切,則橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設z=2x+y,其中變量x和y滿足條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.橢圓C1的中心在坐標原點,兩焦點分別為雙曲線C2:$\frac{{x}^{2}}{2}$-y2=1的頂點,直x+$\sqrt{2}$y=0與橢圓C1交于A、B兩點,且點A的坐標為(-$\sqrt{2}$,1),點P是橢圓C1上異于點A,B的任意一點.
(1)求橢圓C1的標準方程;
(2)求△ABP面積的最大值及此時點P的坐標.

查看答案和解析>>

同步練習冊答案