若n∈N*,(1+
2
)
n
=
2
an+bn
(an、bn∈Z).
(1)求a5+b5的值;
(2)求證:數(shù)列{bn}各項(xiàng)均為奇數(shù).
(1)當(dāng)n=5時,(1+
2
)
5
=
C05
+
C15
2
+
C25
(
2
)
2
+…+
C55
 (
2
)
5

=[
C05
+
C25
(
2
)
2
+
C45
(
2
)
4
]+[
C15
2
+
C25
(
2
)
3
+
C55
(
2
)
5
]
=41+29
2

故a5=29,b5=41所以a5+b5=70
(2)證明:由數(shù)學(xué)歸納法
(i)當(dāng)n=1時,易知b1=1,為奇數(shù);
(ii)假設(shè)當(dāng)n=k時,(1+
2
)
k
=
2
ak+bk
,其中bk為奇數(shù);
則當(dāng)n=k+1時,(1+
2
)
k+1
=(1+
2
)
k
(1+
2
) =(
2
ak+bk)(1+
2
)

=
2
(ak+bk)+(bk+2ak)

∴bk+1=bk+2ak,又ak、bk∈Z,所以2ak是偶數(shù),
由歸納假設(shè)知bk是奇數(shù),故bk+1也是奇數(shù)
綜(i)(ii)可知數(shù)列{bn}各項(xiàng)均為奇數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當(dāng)x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若n∈N*,(1+
2
)n=
2
an+bn
(an,bn∈N*).
(1)求a4+b4的值;
(2)證明:bn=
(1+
2
)
n
+(1-
2
)
n
2
;
(3)若[x]表示不超過x的最大整數(shù).試證:當(dāng)n為偶數(shù)時,[(1+
2
)
n
]=2bn-1
.當(dāng)n為奇數(shù)時,上述結(jié)果是否依然成立?如果不成立,請用bn表示[(1+
2
)
n
]
(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)二模)若n∈N*,(1+
2
)
n
=
2
an+bn
(an、bn∈Z).
(1)求a5+b5的值;
(2)求證:數(shù)列{bn}各項(xiàng)均為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)二模)若n∈N*,(1+
2
)
n
=
2
an+bn
(an、bn∈z),a5+b5=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若n∈N*(1+
2
)n=
2
an+bn
(an,bn∈N*).
(1)求a4+b4的值;
(2)證明:bn=
(1+
2
)
n
+(1-
2
)
n
2

(3)若[x]表示不超過x的最大整數(shù).試證:當(dāng)n為偶數(shù)時,[(1+
2
)
n
]=2bn-1
.當(dāng)n為奇數(shù)時,上述結(jié)果是否依然成立?如果不成立,請用bn表示[(1+
2
)
n
]
(不必證明)

查看答案和解析>>

同步練習(xí)冊答案