【題目】最近上映的電影《后來的我們》引起了一陣熱潮,為了了解大眾對這部電影的評價,隨機(jī)訪問了50名觀影者,根據(jù)這50人對該電影的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,,,.

1)求頻率分布直方圖中的值,并估計觀影者對該電影評分不低于80的概率;

2)由頻率分布直方圖估計評分的中位數(shù)(保留兩位小數(shù))與平均數(shù);

3)從評分在的觀影者中隨機(jī)抽取2人,求至少有一人評分在的概率.

【答案】1;(2)中位數(shù),平均數(shù);(3

【解析】

1)根據(jù)頻率分布直方圖中各小矩形的面積和為1,即可求得的值,并可求得評分不低于80的概率.

2)利用方程的思想,中位數(shù)的左邊和右邊的直方圖的面積相等,即可求出中位數(shù);利用頻率分布直方圖中的每個小矩形的面積乘以小矩形底邊中點(diǎn)的橫坐標(biāo)之和,即可求出平均數(shù);

3)利用列舉法列舉出所有可能,即可由古典概型概率求解.

1)由頻率分布直方圖知,

所以.

觀影者對該電影評分不低于80的概率為.

2)設(shè)中位數(shù)為,,所以.

平均數(shù)為.

3)在的受訪人數(shù)為5,其中之間有2,之間有3,

設(shè)之間2人為A,B. 之間3人為

從中抽取兩人的所有可能為,,10.

至少有1人在間的為7

所以此2人評分至少一人評分在的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】7本不同的書:

1)全部分給6個人,每人至少一本,有多少種不同的分法?

2)全部分給5個人,每人至少一本,有多少種不同的分法?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,,EF分別為AB,CD的中點(diǎn),MDF中點(diǎn).現(xiàn)將四邊形BEFC沿EF折起,使平面平面AEFD,得到如圖所示的多面體.在圖中,

1)證明:

2)求二面角E-BC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列中,,公差,若 ,則數(shù)列的前項(xiàng)和的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,

得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.


優(yōu)秀

非優(yōu)秀

合計

甲班

10



乙班


30


合計



110

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為成績與班級有關(guān)系;

3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從211進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828
span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的一個最高點(diǎn)為,與點(diǎn)相鄰一個最低點(diǎn)為,直線軸的交點(diǎn)為.

1)求函數(shù)的解析式;

2)求函數(shù)的單調(diào)增區(qū)間;

3)若時,函數(shù)恰有一個零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某體育老師隨機(jī)調(diào)查了100名同學(xué),詢問他們最喜歡的球類運(yùn)動,統(tǒng)計數(shù)據(jù)如表所示.已知最喜歡足球的人數(shù)等于最喜歡排球和最喜歡羽毛球的人數(shù)之和.

最喜歡的球類運(yùn)動

足球

籃球

排球

乒乓球

羽毛球

網(wǎng)球

人數(shù)

a

20

10

15

b

5

1)求的值;

2)將足球、籃球、排球統(tǒng)稱為大球,將乒乓球、羽毛球、網(wǎng)球統(tǒng)稱為小球”.現(xiàn)按照喜歡大、小球的人數(shù)用分層抽樣的方式從調(diào)查的同學(xué)中抽取5人,再從這5人中任選2人,求這2人中至少有一人喜歡小球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,都是各項(xiàng)為正數(shù)的數(shù)列,且.對任意的正整數(shù)n,都有,成等差數(shù)列,,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若存在p>0,使得集合M=恰有一個元素,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖象上存在關(guān)于直線對稱的不同兩點(diǎn),則稱具有性質(zhì).已知為常數(shù),函數(shù),,對于命題:①存在,使得具有性質(zhì);②存在,使得具有性質(zhì),下列判斷正確的是( )

A.①和②均為真命題B.①和②均是假命題

C.①是真命題,②是假命題D.①是假命題,②是真命題

查看答案和解析>>

同步練習(xí)冊答案