【題目】函數(shù)y=sin (2x+ )的圖象可由函數(shù)y=cosx的圖象( )
A.先把各點的橫坐標縮短到原來的 倍,再向左平移 個單位
B.先把各點的橫坐標縮短到原來的 倍,再向右平移 個單位
C.先把各點的橫坐標伸長到原來的2倍,再向左平移 個單位
D.先把各點的橫坐標伸長到原來的2倍,再向右平移 個單位

【答案】B
【解析】解:把函數(shù)y=cosx=sin(x+ )的圖象的橫坐標變?yōu)樵瓉淼? 倍,可得y=sin(2x+ )的圖象,

再把所得圖象再向右平移 個單位,可得y=sin[2(x﹣ )+ ]=sin(2x+ )的圖象,

所以答案是:B.

【考點精析】通過靈活運用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A=60°,c= a.
(1)求sinC的值;
(2)若a=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知樣本數(shù)據(jù)a1 , a2 , a3 , a4 , a5的方差s2= (a12+a22+a32+a42+a52﹣80),則樣本數(shù)據(jù)2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的方程為y2=4x,直線L過定點P(﹣2,1),斜率為k.當k為何值時直線與拋物線:
(1)只有一個公共點;
(2)有兩個公共點;
(3)沒有公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,
(1)若m=2,求f(x)的最小值;
(2)若f(x)恰有2個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cos22x﹣2,給出下列命題:
β∈R,f(x+β)為奇函數(shù);
α∈(0, ),f(x)=f(x+2α)對x∈R恒成立;
x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為
x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有( )
A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設A(n)表示正整數(shù)n的個位數(shù),an=A(n2)﹣A(n),A為數(shù)列{an}的前202項和,函數(shù)f(x)=ex﹣e+1,若函數(shù)g(x)滿足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),則數(shù)列{bn}的前n項和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的偶函數(shù)f(x)在(﹣∞,0]上是減函數(shù),且 =2,則不等式f(log4x)>2的解集為( )
A.
B.(2,+∞)
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調(diào)查得到了如下的列表:

喜愛打籃球

不喜愛打籃球

合計

男生

20

5

25

女生

10

15

25

合計

30

20

50


(1)用分層抽樣的方法在喜歡打藍球的學生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍球是否與性別有關,計算出K2 , 你有多大的把握認為是否喜歡打藍球與性別有關? 附:
下面的臨界值表供參考:

p(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案