已知命題p:2x2-3x+1≤0,q:(x-a)(x-a-1)>0,若p是¬q的充分不必要條件,求a的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:計(jì)算題,不等式的解法及應(yīng)用,簡易邏輯
分析:解出二次不等式,由p是¬q的充分不必要條件,即有[
1
2
,1]?[a,a+1],列出a的不等式,解出即可得到范圍.
解答: 解:由2x2-3x+1≤0解得,
1
2
x≤1,
由(x-a)(x-a-1)>0解得,x>a+1,或x<a,
由于p是¬q的充分不必要條件,即有[
1
2
,1]?[a,a+1],
則a≤
1
2
且a+1≥1,解得,0≤a≤
1
2

即a的取值范圍是[0,
1
2
].
點(diǎn)評:本題考查充分必要條件的運(yùn)用,考查不等式的解法和集合的包含關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)C為圓(x+1)2+y2=8的圓心,N是圓上的動點(diǎn),點(diǎn)H在圓的半徑CN上,且有點(diǎn)F(1,0)和FN上的點(diǎn)M,滿足
MH
FN
=0,
FN
=2
FM

(Ⅰ)當(dāng)點(diǎn)N在圓上運(yùn)動時(shí),求點(diǎn)H的軌跡E方程;
(Ⅱ)設(shè)曲線E與x軸正半軸、y軸正半軸的交點(diǎn)分別A,B,經(jīng)過點(diǎn)(0,
2
)
且斜率為k的直線l與曲線E有兩個(gè)不同的交點(diǎn)P和Q,是否存在常數(shù)k,使得向量
OP
+
OQ
AB
共線?如果存在,求k值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
sin(
π
8
x+
3
8
π
),試求:
(1)函數(shù)的對稱中心與對稱軸方程;
(2)函數(shù)f(x)是由函數(shù)g(x)=cosx經(jīng)過怎樣的平移與伸縮變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(4,-3)作圓C:(x-3)2+(y-1)2=1的切線,求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)時(shí),f(x)=2x+
1
5
,則f(log220)=( 。
A、-1
B、
4
5
C、-
4
5
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6

(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)當(dāng)x∈[-
π
6
,
π
4
]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個(gè)數(shù)是( 。
①“在三角形ABC中,若sinA>sinB,則A>B”是真命題;
②函數(shù) f(x)=cos2ax-sin2ax的最小正周期為“π是“a=1”的必要不充分條件;
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④向量
a
=(1,-2)與
b
=(1,m)的夾角為銳角,則m的取值范圍為(-∞,
1
2
).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(-1,2,3),平面α經(jīng)過不共線三點(diǎn)A(1,2,0)、B(-2,0,1)、C(0,2,2).求點(diǎn)M到平面α的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則此幾何體的體積等于( 。
A、30B、12C、24D、4

查看答案和解析>>

同步練習(xí)冊答案