定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)時(shí),f(x)=2x+
1
5
,則f(log220)=( 。
A、-1
B、
4
5
C、-
4
5
D、1
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由于f(-x)=-f(x)推出函數(shù)是奇函數(shù),f(x-2)=f(x+2),得到函數(shù)f(x)為周期為4的函數(shù),求出log220的范圍,再由已知表達(dá)式,和對(duì)數(shù)恒等式,即可得到答案.
解答: 解:由于定義在R上的函數(shù)f(x),滿足f(-x)=-f(x)所以函數(shù)是奇函數(shù),
f(x-2)=f(x+2),所以函數(shù)f(x)為周期為4的函數(shù),
log220∈(4,5),x∈(-1,0)時(shí),f(x)=2x+
1
5

則f(log220)=f(log220-4)=-f(4-log220)=-(24-log220+
1
5
)
=-(
4
5
+
1
5
)
=-1,
故選:A.
點(diǎn)評(píng):本題考查函數(shù)的周期性及運(yùn)用,考查對(duì)數(shù)的運(yùn)算和對(duì)數(shù)恒等式的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4x,x≤1
-x,x>1
,若f(-x)=2,則x=( 。
A、-
1
4
B、-
1
2
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x.
(1)求f(x)的最小正周期;
(2)若x∈(
π
4
,
12
),求f(x)的最大值及最小值;
(3)若函數(shù)g(x)=f(-x),求g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求使
x2+y2
+
x2+(1-y)2
+
(1-x)2+y2
+
(1-x)2+(1-y)2
取最小值時(shí),點(diǎn)P(x,y)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=-2sin(-
1
2
x+
π
3
)+1(x∈[0,4π])的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:2x2-3x+1≤0,q:(x-a)(x-a-1)>0,若p是¬q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式x2+mx+n>0的解集為{x|x>5或x<-1},求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=9,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n為正整數(shù).
(Ⅰ)證明數(shù)列{an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(an+1)}為等比數(shù)列;
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前n項(xiàng)積為Tn,即Tn=(a1+1)(a2+1)…(an+1),求lgTn;
(Ⅲ)在(Ⅱ)的條件下,記bn=
lgTn
lg(an+1)
,求數(shù)列{bn}的前n項(xiàng)和為Sn,并求使Sn>2014的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tan1815°+cot
13π
12
=( 。
A、2
B、2
C、4
D、
4
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案