記函數(shù)f(x)=
1
x-2
的定義域為集合A,集合B={x|-3≤x≤3}.
(1)求A∩B和A∪B;
(2)若C={x|x-p>0},C⊆A,求實數(shù)p的取值范圍.
分析:(1)根據(jù)函數(shù)成立的條件即可求出函數(shù)f(x)的定義域,然后利用集合的基本運算即可求A∩B和A∪B;
(2)根據(jù)條件C⊆A,建立條件關系即可求實數(shù)p的取值范圍.
解答:解:(1)要使函數(shù)有意義,則x-2>0,即x>2,
∴函數(shù)f(x)的定義域為{x|x>2},
即A={x|x>2},
∵B={x|-3≤x≤3}.
∴A∩B={x|2<x≤3}.
A∪B={x|x≥-3}.
(2)∵C={x|x-p>0}={x|x>p},
∴若C⊆A,
則p≥2,
即實數(shù)p的取值范圍為p≥2.
點評:本題主要考查集合的基本運算,以及集合關系的應用,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點M(x1,f(x1))是函數(shù)f(x)=
1x
,x∈(0,+∞)圖象C上的一點,記曲線C在點M處的切線為l.
(1)求切線l的方程;
(2)設l與x軸,y軸的交點分別為A、B,求△AOB周長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,y0)為坐標的點是函數(shù)f(x)的圖象上的“穩(wěn)定點”.
(1)若函數(shù)f(x)=
3x-1x+a
的圖象上有且只有兩個相異的“穩(wěn)定點”,試求實數(shù)a的取值范圍;
(2)已知定義在實數(shù)集R上的奇函數(shù)f(x)存在有限個“穩(wěn)定點”,求證:f(x)必有奇數(shù)個“穩(wěn)定點”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)=
1
x-2
的定義域為集合A,函數(shù)g(x)=
9-x2
的定義域為集合B.
(1)求A∩B和A∪B;
(2)若C={x|x-p>0},C⊆A,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)=
x+1x
的導函數(shù)為f′(x),則 f′(1)的值為
 

查看答案和解析>>

同步練習冊答案