設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013033117191332818347/SYS201303311720139218690322_ST.files/image002.png">,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線和軸的垂線,垂足分別為.
(1)寫(xiě)出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設(shè)點(diǎn)的橫坐標(biāo),求點(diǎn)的坐標(biāo)(用的代數(shù)式表示);(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)
(1)函數(shù)在上是減函數(shù). (2)
(3)此時(shí)四邊形面積有最小值.
【解析】
試題分析:(1)因?yàn)楹瘮?shù)的圖象過(guò)點(diǎn),
所以 2分
函數(shù)在上是減函數(shù). 4分
(2)設(shè) 5分
直線的斜率為 6分
則的方程 7分
聯(lián)立 8分
11分
(3) 12分
13分
∴, 14分
, 15分
∴ , 16分
17分
當(dāng)且僅當(dāng)時(shí),等號(hào)成立.
∴此時(shí)四邊形面積有最小值. 18分
考點(diǎn):本題主要考查函數(shù)的性質(zhì),均值定理的應(yīng)用。
點(diǎn)評(píng):綜合題,利用函數(shù)方程思想,得出面積表達(dá)式,進(jìn)一步運(yùn)用均值定理求面積的最小值,對(duì)數(shù)學(xué)式子變形能力要求較高。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆新課標(biāo)版高三上學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013093000083215748076/SYS201309300009590913781458_ST.files/image002.png">,且.設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線和 軸的垂線,垂足分別為.
(1)寫(xiě)出的單調(diào)遞減區(qū)間(不必證明);
(2)問(wèn):是否為定值?若是,則求出該定值,若不是,則說(shuō)明理由;
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市奉賢區(qū)高考一模理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013031412273464835345/SYS201303141228277264702711_ST.files/image002.png">,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線和軸的垂線,垂足分別為.
(1)寫(xiě)出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問(wèn):是否為定值?若是,則求出該定值,若不是,則說(shuō)明理由;(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)定義域?yàn)?sub>,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線和
軸的垂線,垂足分別為.
(1)寫(xiě)出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設(shè)點(diǎn)的橫坐標(biāo),求點(diǎn)的坐標(biāo)(用的代數(shù)式表示);(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)定義域?yàn)?sub>,且.設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線和軸的垂線,垂足分別為.
(1)寫(xiě)出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設(shè)點(diǎn)的橫坐標(biāo),求點(diǎn)的坐標(biāo)(用的代數(shù)式表示);(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com