【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)O,軸正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)C的極坐標(biāo)為,若直線l經(jīng)過(guò)點(diǎn)P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;
(2).試判斷直線l與圓C有位置關(guān)系.
【答案】(1),;(2)直線與圓相離.
【解析】試題分析:本題主要考查直線的參數(shù)方程、極坐標(biāo)方程、點(diǎn)到直線的距離公式、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),意在考查考生的運(yùn)算求解能力、推理論證能力以及轉(zhuǎn)化思想的應(yīng)用.第一問(wèn),利用已知條件列出直線的參數(shù)方程,利用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,得到點(diǎn)C的直角坐標(biāo),從而得到圓C的標(biāo)準(zhǔn)方程,再利用極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式得到圓C的極坐標(biāo)方程;第二問(wèn),將直線的參數(shù)方程先轉(zhuǎn)化成普通方程,利用點(diǎn)到直線的距離公式求出距離,與半徑比較大小,來(lái)判斷直線與圓的位置關(guān)系.
試題解析:(1)直線的參數(shù)方程,即(為參數(shù))
由題知點(diǎn)的直角坐標(biāo)為,圓半徑為,
∴圓方程為將代入
得圓極坐標(biāo)方程5分
(2)由題意得,直線的普通方程為,
圓心到的距離為,
∴直線與圓相離. 10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對(duì)n∈N*均有 =an+1成立,求c1+c2+c3+…+c2016 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接黨的“十九”大的召開(kāi),某校組織了“歌頌祖國(guó),緊跟黨走”黨史知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出50名學(xué)生,將其成績(jī)(滿分100分,成績(jī)均為整數(shù))分成六段, ,…, 后繪制頻率分布直方圖(如下圖所示)
(Ⅰ)求頻率分布圖中的值;
(Ⅱ)估計(jì)參加考試的學(xué)生得分不低于80的概率;
(Ⅲ)從這50名學(xué)生中,隨機(jī)抽取得分在的學(xué)生2人,求此2人得分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面, , , , , 分別為, 的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2sin Acos C=2sin B-sin C.
(1)求A的大小;
(2)在銳角三角形ABC中, ,求c+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓短軸端點(diǎn)和兩個(gè)焦點(diǎn)的連線構(gòu)成正方形,且該正方形的內(nèi)切圓方程為.
(1)求橢圓的方程;
(2)若拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,直線與拋物線交于兩點(diǎn),且,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=2x2﹣2x﹣3有以下4個(gè)結(jié)論: ①定義域?yàn)镽,
②遞增區(qū)間為[1,+∞)
③是非奇非偶函數(shù);
④值域是[ ,∞).
其中正確的結(jié)論是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鋼廠打算租用,兩種型號(hào)的火車車皮運(yùn)輸900噸鋼材,,兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬(wàn)元/個(gè)和2.4萬(wàn)元/個(gè),鋼廠要求租車皮總數(shù)不超過(guò)21個(gè),且型車皮不多于型車皮7個(gè),分別用,表示租用,兩種車皮的個(gè)數(shù).
(1)用,列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)分別租用,兩種車皮的個(gè)數(shù)是多少時(shí),才能使得租金最少?并求出此最小租金.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn). 分別在.上運(yùn)動(dòng),若的最小值為1,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com