【題目】如圖,在四棱錐中,側面底面, , , , , 分別為, 的中點.

(1)求證: 平面;

(2)求證: 平面

【答案】詳見解析

【解析】試題分析:證明線面平行有兩種思路:第一尋求線線平行,利用線面平行的判定定理.第二尋求面面平行,本題借助平行四邊形和三角形中位線定理可以得到線線平行,進而證明線面平行;證明線面垂直,第一可利用線面垂直的判定定理,證明直線與平面內(nèi)的兩條相交直線垂直,進而說明線面垂直.第二可建立空間直角坐標系,寫出向量的坐標,借助空間向量解題,利用兩個向量數(shù)量積為零,說明線線垂直,也是很簡單的做法.

試題解析:

證明:(1)設交于點,連接

因為,且, 的中點,

所以,且,

所以四邊形為平行四邊形,所以的中點,

的中點,所以,又平面, 平面,所以平面. 

(2)因為,且的中點,所以. 

又平面平面,平面平面 平面,所以平面,

所以

在平行四邊形中,因為,所以四邊形為菱形,所以,

平面 平面,

所以平面

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知曲線為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的機坐標系中,直線的極坐標方程為.

(1)求曲線的普通方程和直線的直角坐標方程;

(2)過點且與直線平行的直線兩點,求點兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某程序框圖如圖所示,該程序運行后輸出的k的值是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應國家治理環(huán)境污染的號召,增強學生的環(huán)保意識,宿州市某中學舉行了一次環(huán)保知識競賽,共有900名學生參加了這次競賽,為了解本次競賽的成績情況,從中抽取了l00學生的成績進行統(tǒng)計,成績頻率分布直方圖如圖所示.估計這次測試中成績的眾數(shù)為;平均數(shù)為;中位數(shù)為 . (各組平均數(shù)取中值計算,保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l過拋物線C的焦點,且與C的對稱軸垂直.l與C交于A,B兩點,|AB|=12,P為C的準線上一點,則△ABP的面積為(
A.18
B.24
C.36
D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y= cos( ﹣2x)的單調(diào)遞增區(qū)間是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ﹣ ,kπ)(k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ+ ,kπ+π](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點為極點O軸正半軸為極軸,已知點P的直角坐標為(1,-5),C的極坐標為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.

(1).求直線l的參數(shù)方程及圓C的極坐標方程;

(2).試判斷直線l與圓C有位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,M為拋物線 上的動點.
(1)若|AB|=8,求拋物線的方程;
(2)求SABM的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若,求函數(shù)的最值.

查看答案和解析>>

同步練習冊答案