下列命題:
①?x∈{x|x是無(wú)理數(shù)},x2是有理數(shù).
②?x∈R,x3>x2
③?x∈R,x2-2x+1≤0
④?x<2,x<1
其中真命題的個(gè)數(shù)是( 。
分析:①取x=
2
,可判定真假;②取x為負(fù)數(shù),可判定真假;③取x=1,可判定真假;④取x=1.5,可判定真假;從而得到正確選項(xiàng).
解答:解:①?x=
2
,x2=2是有理數(shù),故正確;
②?x∈R,x3>x2,錯(cuò)誤,如x為負(fù)數(shù);
③?x∈R,x2-2x+1≤0,正確,如x=1;
④?x<2,x<1不正確,如x=1.5.
故真命題的個(gè)數(shù)是2
故選C.
點(diǎn)評(píng):本題主要考查了全稱量詞和存在性量詞,同時(shí)考查了列舉法判定命題的真假,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列命題:
①“x>1”是“x>2”的充分不必要條件;   
②若sina
1
2
,則a≠
π
6
;
③若xy=0,則x=0且y=0的逆命題  
④命題?x0∈R,使
x
2
0
-x0+1≤0
 的否定.
其中真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①“x=2”是“x2=4”的充分不必要條件;
②設(shè)A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,則實(shí)數(shù)t的取值范圍為[3,+∞);
③若log2x+logx2≥2,則x>1;
④存在x,y∈R,使sin(x-y)=sinx-siny;
⑤若命題P:對(duì)任意的x∈R,函數(shù)y=cos(2x-
π
3
)
的遞減區(qū)間為[kπ-
π
12
,kπ+
12
](k∈Z)
,命題q:存在x∈R,使tanx=1,則命題“p且q”是真命題.
其中真命題的序號(hào)為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:①?x∈R,且x≠0,x+
1
x
≥2
;②?x∈R,x2+1≤2x;③若x>0,y>0,則
x2+y2
2
2xy
x+y
.其中所有真命題的序號(hào)是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題
①存在x∈(0,
π
2
)
,使sinx+cosx=
1
3

②存在區(qū)間(a,b),使y=cosx為減函數(shù)而sinx<0;
③y=tanx在其定義域內(nèi)為增函數(shù);
y=cos2x+sin(
π
2
-x)
既有最大值和最小值,又是偶函數(shù);
y=sin|2x+
π
6
|
的最小正周期為π.
其中錯(cuò)誤的命題為
①②③⑤
①②③⑤
(把所有符合要求的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:①?x∈R,x2≥x;②?x∈R,x2≥x;③?x∈R,2x2-x+1>0,④?x∈[0,+∞),(log32)x≥1中,其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案