已知函數(shù)
.
(1)若
,
,求證:
;
(2)若實(shí)數(shù)
滿足
.試求
的取值范圍.
(1)利用作差法證明,(2)
試題分析:(Ⅰ)由
,
. (5分)
(Ⅱ)由(Ⅰ)可知
在
上為增函數(shù),
,
.
當(dāng)
時(shí),
;
當(dāng)
時(shí),
;
當(dāng)
時(shí),
,
綜上所述,實(shí)數(shù)
的取值范圍為
.
點(diǎn)評:解含參的絕對值不等式時(shí),常常利用分類討論法去掉絕對值,將不等式轉(zhuǎn)化為一般不等式求解
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
的一個(gè)單調(diào)遞增區(qū)間是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
在
上的最大值和最小值分別是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
判斷函數(shù)f(x)=
在區(qū)間(1,+∞)上的單調(diào)性,并用單調(diào)性定義證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
,其中
.
(1)當(dāng)
時(shí),求在曲線
上一點(diǎn)
處的切線方程;
(2)求函數(shù)
的極值點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是函數(shù)
的一個(gè)極值點(diǎn),其中
(1)求
與
的關(guān)系式;
(2)求
的單調(diào)區(qū)間;
(3)設(shè)函數(shù)函數(shù)g(x)=
;試比較g(x)與
的大小。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若
時(shí),
取得極值,求實(shí)數(shù)
的值;
(2)求
在
上的最小值;
(3)若對任意
,直線
都不是曲線
的切線,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
①當(dāng)
時(shí),求函數(shù)在
上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)
在
處取得極值,不等式
對
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)
在
上的最大值和最小值.
查看答案和解析>>