6.三視圖如圖所示的幾何體的全面積是7+$\sqrt{2}$.

分析 根據(jù)幾何體的三視圖,得出該幾何體是底面為直角梯形的直四棱柱,結合圖中數(shù)據(jù)求出它的全面積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是底面為直角梯形的直四棱柱,
且直角梯形的上底為1,下底為2,高為1,
四棱柱的棱長為1;
所以該四棱柱的全面積為
2×$\frac{1}{2}$×(1+2)×1+(1×1+1×1+2×1+1×$\sqrt{{1}^{2}{+1}^{2}}$)=7+$\sqrt{2}$.
故答案為:7+$\sqrt{2}$.

點評 本題考查了利用空間幾何體的三視圖求全面積的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知等比數(shù)列{an}的公比q=$\frac{1}{3}$,且a1+a3+…+a199=180,則a2+a4+…+a200=60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知f(x)=x5-ax3+bx-6,f(-2)=10,則f(2)=-22.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{2}$ax2-lnx-2,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求值:sin(-1740°).cos1470°+cos(-660°)sin750°+tan405°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知|x-a|<$\frac{?}{2m}$,|y-b|<$\frac{?}{2|a|}$,y∈(0,m),求證|xy-ab|<?.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設f(x)是R上的奇函數(shù),且當x>0時,f(x)=log2(x2+2).
(1)求f(x)得解析式及值域:
(2)若f(a+1+4x)+f(a•2x)>0恒成立,求a得取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知集合A={α|k•180°+30°<α<k•180°+90°,k∈Z},集合B={β|k•360°-45°<β<k•360°+45°,k∈Z}.求:(1)A∩B;(2)A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知i為虛數(shù)單位,復數(shù)$\frac{1-i}{2i+1}$的共扼復數(shù)在復平面內對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案