分析 由條件利用正弦定理可得20a•$\overrightarrow{BC}$+15b•$\overrightarrow{CA}$+12c•$\overrightarrow{AB}$=$\overrightarrow{0}$,化簡(jiǎn)可得可得15b-20a=0,且12c-20a=0,求得c2-b2=a2,故△ABC為直角三角形.
解答 解:△ABC中,由20sinA•$\overrightarrow{BC}$+15sinB•$\overrightarrow{CA}$+12sinC•$\overrightarrow{AB}$=$\overrightarrow{0}$,
利用正弦定理得20a•$\overrightarrow{BC}$+15b•$\overrightarrow{CA}$+12c•$\overrightarrow{AB}$=$\overrightarrow{0}$,
又$\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}=-(\overrightarrow{AB}+\overrightarrow{CA})$,
故(15b-20a)$\overrightarrow{CA}$+(12c-20a)$\overrightarrow{AB}$=$\overrightarrow{0}$.
由$\overrightarrow{CA}$,$\overrightarrow{AB}$為不共線(xiàn)向量,可得15b-20a=0,且12c-20a=0,
所以b=$\frac{4}{3}$a,c=$\frac{5}{3}$a,從而c2-b2=a2,故△ABC為直角三角形.
故答案為:直角三角形.
點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的運(yùn)算,正弦定理的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{36}$ | B. | $\frac{1}{12}$ | C. | $\frac{5}{21}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
合格品 | 次品 | 總計(jì) | |
甲機(jī)床加工的零件數(shù) | 35 | 5 | 40 |
乙機(jī)床加工的零件數(shù) | 50 | 10 | 60 |
總計(jì) | 85 | 15 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com