19.某少數(shù)民族的刺繡有著悠久的歷史,圖中(1)、(2)、(3)、(4)為她們刺銹最簡單的四個圖案,這些圖案都是由小正方向構(gòu)成,小正方形數(shù)越多刺銹越漂亮,向按同樣的規(guī)律刺銹(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形

(1)求f(6)的值
(2)求出f(n)的表達式
(3)求證:1≤$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$<$\frac{3}{2}$.

分析 (1)先分別觀察給出正方體的個數(shù)為:1,1+4,1+4+8,…,即可求出f(5);
(2)總結(jié)一般性的規(guī)律,可知f(n+1)-f(n)=4n,利用疊加法,可求f(n)的表達式;
(3)根據(jù)通項特點,利用裂項法求和,結(jié)合數(shù)列的單調(diào)性即可得證.

解答 解:(1)f(1)=1,f(2)=1+4=5,
f(3)=1+4+8=13,f(4)=1+4+8+12=25,
f(5)=1+4+8+12+16=41.f(6)=1+4+8+12+16+20=61;
(2)∵f(2)-f(1)=4=4×1,
f(3)-f(2)=8=4×2,
f(4)-f(3)=12=4×3,
f(5)-f(4)=16=4×4,
由上式規(guī)律得出f(n+1)-f(n)=4n.
∴f(n)-f(n-1)=4(n-1),
f(n-1)-f(n-2)=4•(n-2),
f(n-2)-f(n-3)=4•(n-3),

f(2)-f(1)=4×1,
∴f(n)-f(1)=4[(n-1)+(n-2)+…+2+1]
=2(n-1)•n,
∴f(n)=2n2-2n+1;
(3)證明:當n≥2時,$\frac{1}{f(n)-1}$=$\frac{1}{2{n}^{2}-2n+1-1}$=$\frac{1}{2}$($\frac{1}{n-1}$-$\frac{1}{n}$),
∴$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$=1+$\frac{1}{2}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$)
=1+$\frac{1}{2}$(1-$\frac{1}{n}$)=$\frac{3}{2}$-$\frac{1}{2n}$.
n=1時,上式也成立.
由于g(n)=$\frac{3}{2}$-$\frac{1}{2n}$為遞增數(shù)列,
即有g(shù)(n)≥g(1)=1,
且g(n)<$\frac{3}{2}$,
則1≤$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$<$\frac{3}{2}$成立.

點評 本題主要考查歸納推理,其基本思路是先分析具體,觀察,總結(jié)其內(nèi)在聯(lián)系,得到一般性的結(jié)論,同時考查了裂項法求數(shù)列的和,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,若20sinA•$\overrightarrow{BC}$+15sinB•$\overrightarrow{CA}$+12sinC•$\overrightarrow{AB}$=$\overrightarrow{0}$,則△ABC的形狀是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列向量與$\overrightarrow{a}$=(1,2)共線的是( 。
A.(2,1)B.(1,2)C.(-1,-2)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x、y滿足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,則z=x+2y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.數(shù)列{an}中,a1=1,a2=3,an+2是anan+1的個位數(shù)字,Sn是{an}的前n項和,則S2015=( 。
A.8733B.8710C.8726D.8717

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示,x1,x2,x3為某次考試三個評閱人對同一道題的獨立評分,p為該題的最終得分,當x1=6,x2=9,p=10時,x3=(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=Asin($\frac{π}{3}x$+φ),(A>0,0<φ<$\frac{π}{2}$),y=f(x)的部分圖象如圖所示,P,Q分別為該圖象上相鄰的最高點和最低點,點P在x軸上的射影為R(1,0),cos∠PRQ=-$\frac{4}{5}$.
(1)求A,φ的值;
(2)將函數(shù)f(x)的圖象上所有點向右平移θ(θ>0)個單位,得到函數(shù)g(x)的圖象,若g(x)在區(qū)間[0,3]上單調(diào)遞增,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖; 
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表
非體育迷體育迷合計
合計
(Ⅱ)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=x-$\frac{2}{x}$-3lnx+k在其定義域上有三個零點,則實數(shù)k的取值范圍是( 。
A.(-∞,1-3ln2)B.(1,3ln2-1)C.(1-3ln2,1)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案