【題目】已知{an}是等差數(shù)列,滿足a1=2,a4=14,數(shù)列{bn}滿足b1=1,b4=6,且{an﹣bn}是等比數(shù)列. (Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若n∈N* , 都有bn≤bk成立,求正整數(shù)k的值.

【答案】解:(Ⅰ)設(shè){an}的公差為d,則 , ∴an=2+(n﹣1)×4=4n﹣2,
故{an}的通項(xiàng)公式為an=4n﹣2(n∈N*).
設(shè)cn=an﹣bn , 則{cn}為等比數(shù)列.
c1=a1﹣b1=2﹣1=1,c4=a4﹣b4=14﹣6=8,
設(shè){cn}的公比為q,則 ,故q=2.
,即
(n∈N*).
故{bn}的通項(xiàng)公式為 (n∈N*).
(Ⅱ)由題意,bk應(yīng)為數(shù)列{bn}的最大項(xiàng).
=4﹣2n﹣1(n∈N*).
當(dāng)n<3時(shí),bn+1﹣bn>0,bn<bn+1 , 即b1<b2<b3
當(dāng)n=3時(shí),bn+1﹣bn=0,即b3=b4;
當(dāng)n>3時(shí),bn+1﹣bn<0,bn>bn+1 , 即b4>b5>b6>…
綜上所述,數(shù)列{bn}中的最大項(xiàng)為b3和b4
故存在k=3或4,使n∈N* , 都有bn≤bk成立.
【解析】(Ⅰ)由已知求出數(shù)列{an}的通項(xiàng)公式,求出{an﹣bn}的首項(xiàng)和第四項(xiàng),得到其公比,進(jìn)一步求其通項(xiàng)公式,則{bn}的通項(xiàng)公式可求;(Ⅱ)由題意,bk應(yīng)為數(shù)列{bn}的最大項(xiàng).然后求出 ,再對(duì)n分類討論求得滿足bn≤bk成立的正整數(shù)k的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:),還要掌握等比數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(x+ )+sinx.
(I)利用“五點(diǎn)法”,列表并畫出f(x)在[﹣ , ]上的圖象;
(II)a,b,c分別是△ABC中角A,B,C的對(duì)邊.若a= ,f(A)= ,b=1,求△ABC的面積.

x

f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某軟件公司新開發(fā)一款學(xué)習(xí)軟件,該軟件把學(xué)科知識(shí)設(shè)計(jì)為由易到難共12關(guān)的闖關(guān)游戲.為了激發(fā)闖關(guān)熱情,每闖過一關(guān)都獎(jiǎng)勵(lì)若干慧幣(一種網(wǎng)絡(luò)虛擬幣).該軟件提供了三種獎(jiǎng)勵(lì)方案:第一種,每闖過一關(guān)獎(jiǎng)勵(lì)40慧幣;第二種,闖過第一關(guān)獎(jiǎng)勵(lì)4慧幣,以后每一關(guān)比前一關(guān)多獎(jiǎng)勵(lì)4慧幣;第三種,闖過第一關(guān)獎(jiǎng)勵(lì)0.5慧幣,以后每一關(guān)比前一關(guān)獎(jiǎng)勵(lì)翻一番(即增加1倍),游戲規(guī)定:闖關(guān)者須于闖關(guān)前任選一種獎(jiǎng)勵(lì)方案.
(Ⅰ)設(shè)闖過n ( n∈N,且n≤12)關(guān)后三種獎(jiǎng)勵(lì)方案獲得的慧幣依次為An , Bn , Cn , 試求出An , Bn , Cn的表達(dá)式;
(Ⅱ)如果你是一名闖關(guān)者,為了得到更多的慧幣,你應(yīng)如何選擇獎(jiǎng)勵(lì)方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|sinx|+cosx,現(xiàn)有如下幾個(gè)命題: ①該函數(shù)為偶函數(shù);
②該函數(shù)最小正周期為 ;
③該函數(shù)值域?yàn)?
④若定義區(qū)間(a,b)的長度為b﹣a,則該函數(shù)單調(diào)遞增區(qū)間長度的最大值為
其中正確命題為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為x)

組別

步數(shù)分組

頻數(shù)

A

5500≤x<6500

2

B

6500≤x<7500

10

C

7500≤x<8500

m

D

8500≤x<9500

2

E

9500≤x<10500

n

(Ⅰ)寫出m,n的值,并回答這20名“微信運(yùn)動(dòng)”團(tuán)隊(duì)成員一天行走步數(shù)的中位數(shù)落在哪個(gè)組別;
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 , ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 , ,試分別比較v1與v2 , 的大;(只需寫出結(jié)論)
(Ⅲ)從上述A,E兩個(gè)組別的數(shù)據(jù)中任取2個(gè)數(shù)據(jù),記這2個(gè)數(shù)據(jù)步數(shù)差的絕對(duì)值為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為△ABC的外心,且 . ①若∠C=90°,則λ+μ=;
②若∠ABC=60°,則λ+μ的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=cos2x圖象上所有點(diǎn)向右平移 個(gè)單位長度后得到函數(shù)g(x)的圖象,若g(x)在區(qū)間[0,a]上單調(diào)遞增,則實(shí)數(shù)a的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ +alnx(x>0,a為常數(shù)).
(1)討論函數(shù)g(x)=f(x)﹣x2的單調(diào)性;
(2)對(duì)任意兩個(gè)不相等的正數(shù)x1、x2 , 求證:當(dāng)a≤0時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos22x﹣2,給出下列命題: ①β∈R,f(x+β)為奇函數(shù);
α∈(0, ),f(x)=f(x+2α)對(duì)x∈R恒成立;
x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為
x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有(
A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

同步練習(xí)冊(cè)答案