【題目】下圖是某市2月1日至14日的空氣質(zhì)量指數(shù)趨勢圖及空氣質(zhì)量指數(shù)與污染程度對應(yīng)表.某人隨機(jī)選擇2月1日至2月13日中的某一天到該市出差,第二天返回(往返共兩天).
空氣質(zhì)量指數(shù) | 污染程度 |
小于100 | 優(yōu)良 |
大于100且小于150 | 輕度 |
大于150且小于200 | 中度 |
大于200且小于300 | 重度 |
(1)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(只寫出結(jié)論不要求證明)
(2)求此人到達(dá)當(dāng)日空氣質(zhì)量優(yōu)良的概率;
(3)求此人出差期間(兩天)空氣質(zhì)量至少有一天為中度或重度污染的概率.
【答案】(1)從2月5日天開始,連續(xù)三天的空氣質(zhì)量指數(shù)方差最大.
(2);(3);
【解析】
(1)觀察某市2月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,能得到從哪天開始,連續(xù)三天的空氣質(zhì)量指數(shù)方差最大.
(2)由某市2月1日至14日的空氣質(zhì)量指數(shù)趨勢圖得到在2月1日至2月13日為13天中,空氣質(zhì)量優(yōu)良的天數(shù)有6天,由此能求出此人到達(dá)當(dāng)日空氣質(zhì)量優(yōu)良的概率.
(3)某人隨機(jī)選擇2月1日至2月13日中的某一天到該市出差,第二天返回(往返共兩天),利用列舉法求出基本事件總數(shù)和此人出差期間(兩天)空氣質(zhì)量至少有一天為中度或重度污染的情況有多少種,由此能求出此人出差期間(兩天)空氣質(zhì)量至少有一天為中度或重度污染的概率.
解:(1)由某市2月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,
得到從2月5日天開始,連續(xù)三天的空氣質(zhì)量指數(shù)方差最大.
(2)由某市2月1日至14日的空氣質(zhì)量指數(shù)趨勢圖得到在2月1日至2月13日為13天中,空氣質(zhì)量優(yōu)良的天數(shù)有6天,
此人到達(dá)當(dāng)日空氣質(zhì)量優(yōu)良的概率.
(3)某人隨機(jī)選擇2月1日至2月13日中的某一天到該市出差,第二天返回(往返共兩天),
基本事件總數(shù),
此人出差期間(兩天)空氣質(zhì)量至少有一天為中度或重度污染的情況有:
、,、,、,、,、,、,、,、,共8種,
此人出差期間(兩天)空氣質(zhì)量至少有一天為中度或重度污染的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,,并且函數(shù)在實數(shù)集上是單調(diào)增函數(shù),求實數(shù)的取值范圍;
(2)若,,,求函數(shù)在區(qū)間上的值域;
(3)若,都不為0,記函數(shù)的圖象為曲線,設(shè)點,是曲線上的不同兩點,點為線段的中點,過點作軸的垂線交曲線于點.試問:曲線在點處的切線是否平行于直線?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,,橢圓上一點到的距離之和為4.過點作直線的垂線交直線于點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)試判斷直線與橢圓公共點的個數(shù),并說明理由;
(3)直線與直線交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斜率為的直線過拋物線的焦點,且與拋物線交于、兩點.
(1)設(shè)點在第一象限,過作拋物線的準(zhǔn)線的垂線,為垂足,且,直線與直線關(guān)于直線對稱,求直線的方程;
(2)過且與垂直的直線與圓交于、兩點,若與面積之和為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD-中,AB//CD,AB=1,CD=3,AP=2,DP=2,PAD=60°,AB⊥平面PAD,點M在棱PC上.
(Ⅰ)求證:平面PAB⊥平面PCD;
(Ⅱ)若直線PA// 平面MBD,求此時直線BP與平面MBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù)).
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,關(guān)于的方程有且僅有一個根, 求實數(shù)的取值范圍;
(3)若對任意,不等式均成立, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的一個頂點為,焦點在x軸上,若橢圓的右焦點到直線的距離是3.
求橢圓E的方程;
設(shè)過點A的直線l與該橢圓交于另一點B,當(dāng)弦AB的長度最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點在軸上方,且到定點距離比到軸的距離大.
(1)求動點的軌跡的方程;
(2)過點的直線與曲線交于,兩點,點,分別異于原點,在曲線的,兩點處的切線分別為,,且與交于點,求證:在定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com