【題目】已知函數(shù).
(1)若,,并且函數(shù)在實(shí)數(shù)集上是單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若,,,求函數(shù)在區(qū)間上的值域;
(3)若,都不為0,記函數(shù)的圖象為曲線,設(shè)點(diǎn),是曲線上的不同兩點(diǎn),點(diǎn)為線段的中點(diǎn),過(guò)點(diǎn)作軸的垂線交曲線于點(diǎn).試問(wèn):曲線在點(diǎn)處的切線是否平行于直線?并說(shuō)明理由.
【答案】(1);(2)當(dāng)的值域是,當(dāng)的值域是,當(dāng)的值域是;(3)曲線在點(diǎn)處的切線不平行于直線,理由詳見(jiàn)解析.
【解析】
(1)只需在上恒成立,根據(jù)二次函數(shù)根的判別式,即可求解;
(2)求導(dǎo),對(duì)分類討論,求出在單調(diào)性,進(jìn)而求出極值最值,即可得出結(jié)論;
(3)由已知得到點(diǎn)坐標(biāo),由兩點(diǎn)式求出的斜率,再由導(dǎo)數(shù)得到曲線在處的斜率,由斜率相等,設(shè),得到,令,后構(gòu)造函數(shù),判斷是否存在零點(diǎn),即可得出結(jié)論.
(1),
當(dāng)時(shí),,
函數(shù)在實(shí)數(shù)集上是單調(diào)增函數(shù),
在上恒成立,
,
實(shí)數(shù)的取值范圍;
(2)當(dāng),,時(shí),
,
當(dāng),
單調(diào)遞增,
單調(diào)遞減,
當(dāng),,
,當(dāng),
,
當(dāng),
綜上,當(dāng)的值域是,
當(dāng)的值域是,
當(dāng)的值域是;
(3),都不為0時(shí),點(diǎn)橫坐標(biāo)為
函數(shù),
,曲線在處的切線斜率為
,
直線的斜率為,
則
,
假設(shè)曲線在點(diǎn)處的切線平行于直線,則,
即,
不妨設(shè),則,
令,
時(shí)恒成立,
所以在上是增函數(shù),又,
,即在上不成立,
曲線在點(diǎn)處的切線不平行直線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),、、都有,滿足的實(shí)數(shù)有且只有3個(gè),給出下述四個(gè)結(jié)論:①滿足題目條件的實(shí)數(shù)有且只有2個(gè):②滿足題目條件的實(shí)數(shù)有且只有2個(gè);③在上單調(diào)遞增;④的取值范圍是.其中所有正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線過(guò)點(diǎn)與曲線交于不同兩點(diǎn),的中點(diǎn)為,與的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并將同學(xué)乙的成績(jī)的頻率分布直方圖填充完整;
(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可);
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),記事件為“其中2個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)為二次函數(shù)的圖像經(jīng)過(guò)點(diǎn)和點(diǎn)回答以下問(wèn)題:
(1)用表示和的圖像的頂點(diǎn)的縱坐標(biāo);
(2)證明:若二次函數(shù)的圖像上的點(diǎn)滿足,則向量與的數(shù)量積大于.
(3)當(dāng)變化時(shí),求中二次函數(shù)頂點(diǎn)縱坐標(biāo)的最大值,并求出此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù),(是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,,,,,直線與平面所成的角為,是的中點(diǎn).
(1)求證:平面平面;
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是某市2月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖及空氣質(zhì)量指數(shù)與污染程度對(duì)應(yīng)表.某人隨機(jī)選擇2月1日至2月13日中的某一天到該市出差,第二天返回(往返共兩天).
空氣質(zhì)量指數(shù) | 污染程度 |
小于100 | 優(yōu)良 |
大于100且小于150 | 輕度 |
大于150且小于200 | 中度 |
大于200且小于300 | 重度 |
(1)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(只寫出結(jié)論不要求證明)
(2)求此人到達(dá)當(dāng)日空氣質(zhì)量?jī)?yōu)良的概率;
(3)求此人出差期間(兩天)空氣質(zhì)量至少有一天為中度或重度污染的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com