分析 (I)利用圓的相切的性質(zhì)、橢圓的定義即可得出.
(II)經(jīng)檢驗(yàn),當(dāng)直線l⊥x軸時(shí),題目條件不成立,所以直線l存在斜率,設(shè)直線l:y=kx+2.設(shè)C(x1,y1),D(x2,y2),直線方程與橢圓方程聯(lián)立化為:(1+4k2)x2+16kx+12=0.△>0,利用向量坐標(biāo)運(yùn)算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系即可得出.
解答 解:(Ⅰ)設(shè)P(x,y)為所求曲線上任意一點(diǎn),并且⊙P與⊙M相切于點(diǎn)B,
則|PM|+|PN|=|PM|+|PB|=4.
所以點(diǎn)P的軌跡方程為$\frac{x^2}{4}+{y^2}=1$.
(Ⅱ)經(jīng)檢驗(yàn),當(dāng)直線l⊥x軸時(shí),題目條件不成立,所以直線l存在斜率,
設(shè)直線l:y=kx+2.設(shè)C(x1,y1),D(x2,y2),
則$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ y=kx+2\end{array}\right.⇒({1+4{k^2}}){x^2}+16kx+12=0$,
△=(16k)2-4(1+4k2)•12>0,得${k^2}>\frac{3}{4}$.
${x_1}+{x_2}=-\frac{16k}{{1+4{k^2}}}$…①,${x_1}{x_2}=\frac{12}{{1+4{k^2}}}$…②,
又由$\overrightarrow{AC}=\frac{3}{5}\overrightarrow{AD}$,得${x_1}=\frac{3}{5}{x_2}$,
將它代入①,②得k2=1,k=±1(滿(mǎn)足${k^2}>\frac{3}{4}$),
所以直線l的斜率為k=±1,所以直線l的方程為y=±x+2.
點(diǎn)評(píng) 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題、向量坐標(biāo)運(yùn)算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k<-2 | B. | k<-3 | C. | k<0 | D. | k>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x>3} | B. | {x|x≥3} | C. | {x|x<0或x>3} | D. | {x|x≤0或x≥3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“?x∈R,x2-x≤0”的否定是“$?{x_0}∈R,x_0^2-{x_0}≥0$”. | |
B. | 命題“p∧q為真”是命題“p∨q為真”的必要不充分條件. | |
C. | “若am2≤bm2,則a≤b”的否命題為真. | |
D. | 若實(shí)數(shù)x,y∈[-1,1],則滿(mǎn)足x2+y2≥1的概率為$\frac{π}{4}$. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=$\frac{5π}{6}$ | B. | x=$\frac{2π}{3}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com