【題目】如圖,直三棱柱的底面是邊長為2的正三角形,側(cè)棱,是線段的延長線上一點(diǎn),平面分別與相交于.
(1)求證:平面;
(2)求當(dāng)為何值時(shí),平面平面.
【答案】(1)證明見解析(2)
【解析】
(1)根據(jù)線面平行的性質(zhì)證明即可.
(2)分別取線段的中點(diǎn),再根據(jù)題意分析平面時(shí)的點(diǎn),根據(jù)三角形的全等與相似的關(guān)系求得的長度即可.或者建立空間直角坐標(biāo)系求解.
(1)因?yàn)?/span>,在平面外,則平面.
因?yàn)槠矫?/span>平面,
則,從而.
因?yàn)?/span>在平面外,所以平面.
(2)解法一:分別取線段的中點(diǎn),則,
所以四點(diǎn)共面.
因?yàn)?/span>,則,所以.
因?yàn)?/span>,則.
若,則平面,從而平面平面.
此時(shí),,則.
因?yàn)?/span>是邊長為2的正三角形,則,
又,則,
從而,
所以當(dāng)時(shí),平面平面.
(2)解法二:如圖,分別取的中點(diǎn),以為原點(diǎn),
直線分別為軸,軸,軸建立空間直角坐標(biāo)系
由已知,,則點(diǎn),
從而
設(shè)平面的法向量為,
由,得
取,則
設(shè),則點(diǎn),從而
設(shè)平面的法向量,
由,得
取,則.
因?yàn)槠矫?/span>平面,則,
得,,從而
所以當(dāng)時(shí),平面平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的方程為.
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程和直線的極坐標(biāo)方程;
(2)在(1)的條件下,直線的極坐標(biāo)方程為,設(shè)曲線與直線的交于點(diǎn)和點(diǎn),曲線與直線的交于點(diǎn)和點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為,點(diǎn)在橢圓上.
(1)設(shè)點(diǎn)到直線的距離為,證明:為定值;
(2)若是橢圓上的兩個(gè)動(dòng)點(diǎn)(都不與重合),直線的斜率互為相反數(shù),當(dāng)時(shí),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,點(diǎn)是對(duì)角線上的動(dòng)點(diǎn)(點(diǎn)與不重合),則下列結(jié)論正確的是__________.
①存在點(diǎn),使得平面平面;
②存在點(diǎn),使得平面平面;
③若分別是在平面與平面的正投影的面積,則存在點(diǎn),使得;
④的面積可能等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若在恒成立,求的取值范圍;
(III)當(dāng),時(shí),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體中,點(diǎn)P在正方體的對(duì)角線AB上,點(diǎn)Q在正方體的棱CD上,若P為動(dòng)點(diǎn),Q為動(dòng)點(diǎn),則PQ的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com