【題目】如圖,在四棱錐EABCD中,底面ABCD是邊長為2的正方形,且DE,平面ABCD⊥平面ADE,∠ADE30°

(1)求證:AE⊥平面CDE;

(2)求AB與平面BCE所成角的正弦值.

【答案】(1)詳見解析;(2).

【解析】

1)根據(jù)線面垂直的判定定理,可直接得出結(jié)論成立;

2)以為原點(diǎn),直線,分別為軸,過點(diǎn)作與直線平行的直線為軸,建立空間直角坐標(biāo)系,分別求出直線的方向向量與平面的法向量,根據(jù)向量夾角的余弦值,即可求出結(jié)果.

解:(1)證明:平面平面,交線為,且

平面,從而,

,由 余弦定理得

,即

平面.

(2)以為原點(diǎn),直線分別為軸,過點(diǎn)作與直線平行的直線為軸,建立空間直角坐標(biāo)系。

,

設(shè),,

,

所以平面BCE的法向量

與平面所成角的正弦弦值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分,設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.

1)求開始第4次發(fā)球時(shí),甲、乙的比分為12的概率;

2表示開始第4次發(fā)球時(shí)乙的得分,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少兒游泳隊(duì)需對隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測試;已知隊(duì)員的測試分?jǐn)?shù)與仰臥起坐

個(gè)數(shù)之間的關(guān)系如下:;測試規(guī)則:每位隊(duì)員最多進(jìn)行三組測試,

每組限時(shí)1分鐘,當(dāng)一組測完,測試成績達(dá)到60分或以上時(shí),就以此組測試成績作為該

隊(duì)員的成績,無需再進(jìn)行后續(xù)的測試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”

在一分鐘內(nèi)限時(shí)測試的頻率分布直方圖如下:

(1)計(jì)算值,并根據(jù)直方圖計(jì)算“喵兒”1分鐘內(nèi)仰臥起坐的個(gè)數(shù);

(2)計(jì)算在本次的三組測試中,“喵兒”得分等于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線交拋物線于,兩點(diǎn).若線段的垂直平分線與軸交于點(diǎn),則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù),函數(shù).

(1)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若函數(shù)與函數(shù)的圖象分別位于直線的兩側(cè),求的取值集合;

(3)對于,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)榧?/span>.

1)若,求的取值范圍;

2)若存在兩個(gè)不相等負(fù)實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍;

3)是否存在實(shí)數(shù),滿足對于任意,都有;對于任意的.都有,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),a為正常數(shù)),且函數(shù)的圖象與y軸的交點(diǎn)重合.

1)求a實(shí)數(shù)的值

2)若b為常數(shù))試討論函數(shù)的奇偶性;

3)若關(guān)于x的不等式有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對在直角坐標(biāo)系的第一象限內(nèi)的任意兩點(diǎn)作如下定義:若,那么稱點(diǎn)是點(diǎn)上位點(diǎn)同時(shí)點(diǎn)是點(diǎn)下位點(diǎn)

1)試寫出點(diǎn)的一個(gè)上位點(diǎn)坐標(biāo)和一個(gè)下位點(diǎn)坐標(biāo);

2)已知點(diǎn)是點(diǎn)上位點(diǎn),判斷是否一定存在點(diǎn)滿足既是點(diǎn)上位點(diǎn),又是點(diǎn)下位點(diǎn)若存在,寫出一個(gè)點(diǎn)坐標(biāo),并證明:若不存在,則說明理由;

3)設(shè)正整數(shù)滿足以下條件:對集合,總存在,使得點(diǎn)既是點(diǎn)下位點(diǎn),又是點(diǎn)上位點(diǎn),求正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)消防安全意識,某中學(xué)對全體學(xué)生做了一次消防知識講座,從男生中隨機(jī)抽取人,從女生中隨機(jī)抽取人參加消防知識測試,統(tǒng)計(jì)數(shù)據(jù)得到如下列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

女生

總計(jì)

(1)試判斷能否有的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);

附:

(2)為了宣傳消防知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出人組成宣傳小組.現(xiàn)從這人中隨機(jī)抽取人到校外宣傳,求到校外宣傳的同學(xué)中男生人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案