已知函數(shù)f(x)=
1
2
x2-2x(x∈R),g(x)=m+4ln(x+1)(-1<x≤4).
(Ⅰ)求f(x)在x=1處的切線方程;
(Ⅱ)是否存在實(shí)數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且僅有兩個(gè)不同的交點(diǎn)?若存在,求出m的值或范圍;若不存在,說明理由.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出導(dǎo)數(shù),求出切線的斜率和切點(diǎn)坐標(biāo),應(yīng)用點(diǎn)斜式方程寫出切線方程;
(Ⅱ)遇到關(guān)于兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)的問題,一般是構(gòu)造新函數(shù),題目轉(zhuǎn)化為研究函數(shù)的零點(diǎn)問題,通過導(dǎo)數(shù)得到函數(shù)的最值,把函數(shù)的最值同0進(jìn)行比較,得到結(jié)果.
解答: 解:(Ⅰ)函數(shù)f(x)=
1
2
x2-2x的導(dǎo)數(shù)f′(x)=x-2,
則切線的斜率為1-2=-1,切點(diǎn)為(1,-
3
2
),
∴f(x)在x=1處的切線方程為:y+
3
2
=-(x-1)即2x+2y+1=0;
(Ⅱ)函數(shù)y=f(x)的圖象與y=g(x)的圖象有且只有兩個(gè)不同的交點(diǎn),
即函數(shù)m(x)=f(x)-g(x)的圖象與x軸(-1<x≤4)有且只有兩個(gè)不同的交點(diǎn).
∵m(x)=
1
2
x2-2x-4ln(x+1)-m,m′(x)=
(x-3)(x+2)
x+1
(-1<x≤4)
當(dāng)x∈(-1,3)時(shí),m'(x)<0,m(x)是減函數(shù);
當(dāng)x∈(3,4)時(shí),m'(x)>0,m(x)是增函數(shù);
∴m(x)極小值=m(3)=-m-8ln2-
3
2

又m(4)=-4ln5,
∴要使函數(shù)m(x)=f(x)-g(x)的圖象與x軸(-1<x≤4)有且只有兩個(gè)不同的交點(diǎn),
必須且只須m(4)>0且m(3)<0,
即-8ln2-
3
2
<m<-4ln5.
∴存在實(shí)數(shù)m,使得函數(shù)y=f(x)的圖象與y=g(x)的圖象有且只有兩個(gè)不同的交點(diǎn),
且m的取值范圍為(-8ln2-
3
2
,-4ln5).
點(diǎn)評(píng):本小題主要考查函數(shù)的單調(diào)性、極值、最值等基本知識(shí),考查運(yùn)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法,考查運(yùn)算能力,考查函數(shù)與方程、數(shù)形結(jié)合、分類與整合等數(shù)學(xué)思想方法和分析問題、解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(k,
2
),
b
=(2,-2)且
a
b
=-4
2
,則k的值為(  )
A、2
B、
2
C、-2
D、-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC的兩邊AB=2,AC=1,點(diǎn)D在BC邊上,且滿足
|
AB
|
|
AC
|
=
|
BD
|
|
DC
|
,點(diǎn)M為AD的中點(diǎn),過點(diǎn)M的直線l分別交AB、AC于點(diǎn)P、Q,已知:
AP
AB
,
AQ
AC
(其中0<λ≤1,0<μ≤1),△ABC和△APQ的面積分別為S1、S2
(Ⅰ)求△ABC的面積的最大值;
(Ⅱ)求證:
1
λ
+
2
μ
的值為一個(gè)定值;
(Ⅲ)求
S2
S1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+a|+|2x-1|(a∈R).
(l)當(dāng)a=1,求不等式f(x)≥2的解集;
(2)若f(x)≤2x的解集包含[
1
2
,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了繪制海底地圖,測量海底兩點(diǎn)C,D間的距離,海底探測儀沿水平方向在A,B兩點(diǎn)進(jìn)行測量,A,B,C,D在同一個(gè)鉛垂平面內(nèi).海底探測儀測得∠BAC=30°,∠DAC=45°,∠ABD=45°,∠DBC=75°,A,B兩點(diǎn)的距離為
3
海里.
(1)求△ABD的面積;
(2)求C,D之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把四進(jìn)制數(shù)2132化為七進(jìn)制數(shù)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項(xiàng)為a1=
1
4
,公比q=
1
4
的等比數(shù)列,設(shè)數(shù)列{bn}滿足bn+2=3log
1
4
an(n∈N*).
(1)求數(shù)列{an+bn}的前n項(xiàng)和為Sn
(2)若數(shù)列{cn}滿足cn=an•bn,若cn
1
4
m2+m-1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點(diǎn)P(
4
3
,2)且與x,y軸的正方向分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn)
(1)當(dāng)△AOB的周長為12時(shí),求直線l的方程;
(2)當(dāng)△AOB的面積為6時(shí),求直線l的方程;
(3)當(dāng)△AOB的面積最小時(shí),求直線l的方程;
(4)當(dāng)|AP||BP|最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式|x+1|+|x-2|-5>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案