15.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(-2,2).
(1)若$\overrightarrow{a}•\overrightarrow$=$\frac{14}{5}$,求(sinα+cosα)2的值;
(2)若$\overrightarrow{a}∥\overrightarrow$,求sin(π-α)•sin($\frac{π}{2}+α$)的值.

分析 (1)利用數(shù)量積運(yùn)算、同角三角函數(shù)基本關(guān)系式可求2sinαcosα的值,即可得解.
(2)根據(jù)平面向量的共線定理,同角三角函數(shù)基本關(guān)系式可求sinαcosα,進(jìn)而利用誘導(dǎo)公式化簡(jiǎn)所求即可得解.

解答 (本題滿分為14分)
解:(1)∵向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(-2,2).$\overrightarrow{a}•\overrightarrow$=2sinα-2cosα=$\frac{14}{5}$,
∴解得:sinα-cosα=$\frac{7}{5}$,兩邊平方,可得:1-2sinαcosα=$\frac{49}{25}$,解得:2sinαcosα=-$\frac{24}{25}$,
∴(sinα+cosα)2=1+2sinαcosα=1-$\frac{24}{25}$=$\frac{1}{25}$.
(2)∵$\overrightarrow{a}∥\overrightarrow$,
∴2cosα+2sinα=0,解得:cosα+sinα=0,
∴兩邊平方可得:1+2sinαcosα=0,解得:sinαcosα=-$\frac{1}{2}$,
∴sin(π-α)•sin($\frac{π}{2}+α$)=sinα•cosα=-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算、平面向量的共線定理,同角三角函數(shù)基本關(guān)系式的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知△ABC是邊長(zhǎng)為$2\sqrt{3}$的正三角形,EF為△ABC的外接圓o的一條直徑,M為△ABC的邊上的動(dòng)點(diǎn),則$\overrightarrow{ME}•\overrightarrow{MF}$的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2若平面向量$\overrightarrow{c}$滿足|$\overrightarrow{c}$-($\overrightarrow{a}$+$\overrightarrow$)|=|$\overrightarrow{a}$-$\overrightarrow$|,則|$\overrightarrow{c}$|的最大值為2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.?dāng)?shù)列{an}表示第n天午時(shí)某種細(xì)菌的數(shù)量.細(xì)菌在理想條件下第n天的日增長(zhǎng)率rn=0.6(rn=$\frac{{{a_{n+1}}-{a_n}}}{a_n}$,n∈N*).當(dāng)這種細(xì)菌在實(shí)際條件下生長(zhǎng)時(shí),其日增長(zhǎng)率rn會(huì)發(fā)生變化.如圖描述了細(xì)菌在理想和實(shí)際兩種狀態(tài)下細(xì)菌數(shù)量Q隨時(shí)間的變化規(guī)律.那么,對(duì)這種細(xì)菌在實(shí)際條件下日增長(zhǎng)率rn的規(guī)律描述正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$與拋物線y2=2px(p>0)有公共焦點(diǎn)F且交于A,B兩點(diǎn),若直線AB過(guò)焦點(diǎn)F,則該雙曲線的離心率是( 。
A.$\sqrt{2}$B.1+$\sqrt{2}$C.2$\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知α∈(0,π),$cosα=-\frac{1}{2}$,則sin2α=( 。
A.$±\frac{{\sqrt{3}}}{2}$B.$±\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)A(x0,y0)是拋物線y2=2px(p>0)上一點(diǎn),且它在第一象限內(nèi),焦點(diǎn)為F,O坐標(biāo)原點(diǎn),若|AF|=$\frac{3p}{2}$,|AO|=2$\sqrt{3}$,則此拋物線的準(zhǔn)線方程為( 。
A.x=-4B.x=-3C.x=-2D.x=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)a,b∈R,函數(shù)f(x)=ax+b(0≤x≤1),則f(x)>0恒成立是a+2b>0成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知某幾何體如圖1所示.
(1)根據(jù)圖2所給幾何體的正視圖與俯視圖(其中正方形網(wǎng)絡(luò)邊長(zhǎng)為1),畫(huà)出幾何圖形的側(cè)視圖,并求該側(cè)視圖的面積;
(2)求異面直線AC與EF所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案