15.如圖,多面體OABCD,AB=CD=2,AD=BC=$2\sqrt{3}$,AC=BD=$\sqrt{10}$,且OA,OB,OC兩兩垂直,則下列說法正確的是(  )
A.直線OB∥平面ACD
B.球面經(jīng)過點A、B、C、D四點的球的直徑是$\sqrt{13}$
C.直線AD與OB所成角是45°
D.二面角A-OC-D等于30°

分析 對四個選項分別進行判斷,即可得出結(jié)論.

解答 解:對于A,由于OB∥AE,AE和平面ACD相交,則OB和平面ACD相交,故A錯
對于B,球面經(jīng)過點A、B、C、D兩點的球的直徑即為長方體的對角線長,
即為$\sqrt{1+9+3}$=$\sqrt{13}$,故B對
對于C由于OB∥AE,則∠DAE即為直線AD與OB所成的角,tan∠DAE=$\sqrt{3}$,則∠DAE=60°,故C錯誤;
對于D,因為AO⊥OC,DC⊥OC,所以異面直線CD與OA所成的角大小為二面角A-OC-D的二面角大小,連接OE,則∠AOE為所求,tan∠AOE=$\sqrt{3}$,所以∠AOE=60°;D錯誤.
故選B.

點評 本題考查線面的位置關(guān)系的判斷,空間異面直線所成的角,以及多面體的外接球的關(guān)系,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.A=$\left\{{(x,y)\left|{y≤\left.{\sqrt{4-{x^2}},y≥0}\right\}}\right.}$,B={(x,y)|x+y≥2},則A∩B所對應(yīng)區(qū)域面積為(  )
A.B.π-2C.πD.π+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{6}{x-1}$-$\sqrt{x+4}$,求函數(shù)f(x)的定義域[-4,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若拋物線y2=6x上的點M到焦點的距離為10,則M到y(tǒng)軸的距離是$\frac{17}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線x2+y=8與x軸交于A,B兩點,動點P與A,B連線的斜率之積為$-\frac{1}{2}$.
(1)求動點P的軌跡C的方程.
(2)MN是動點P軌跡C的一條弦,且直線OM,ON的斜率之積為$-\frac{1}{2}$.求$\overrightarrow{OM}•\overrightarrow{ON}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在四面體ABCD中,AB=CD=$2\sqrt{2}$,AD=BD=3,AC=BC=4,點E,F(xiàn),G,H分別在棱AD,BD,BC,AC上,若直線AB,CD都平行于平面EFGH,則四邊形EFGH面積的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)計一個計算1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{9}^{2}}$+$\frac{1}{1{0}^{2}}$值的一個程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.不等式$\frac{x+1}{x+2}<0$的解集為(-2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在空間,α表示平面,m,n表示二條直線,則下列命題中錯誤的是( 。
A.若m∥α,m、n不平行,則n與α不平行B.若m∥α,m、n不垂直,則n與α不垂直
C.若m⊥α,m、n不平行,則n與α不垂直D.若m⊥α,m、n不垂直,則n與α不平行

查看答案和解析>>

同步練習(xí)冊答案