7.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點為A,以A為圓心,b為半徑作圓A,圓A與雙曲線C的一條漸近線交于M、N兩點.若∠MAN=60°,則C的離心率為$\frac{2\sqrt{3}}{3}$.

分析 利用已知條件,轉化求解A到漸近線的距離,推出a,c的關系,然后求解雙曲線的離心率即可.

解答 解:雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點為A(a,0),
以A為圓心,b為半徑做圓A,圓A與雙曲線C的一條漸近線交于M、N兩點.
若∠MAN=60°,可得A到漸近線bx+ay=0的距離為:bcos30°=$\frac{\sqrt{3}}{2}b$,
可得:$\frac{|ab|}{\sqrt{{a}^{2}+^{2}}}$=$\frac{\sqrt{3}}{2}b$,即$\frac{a}{c}=\frac{\sqrt{3}}{2}$,可得離心率為:e=$\frac{2\sqrt{3}}{3}$.
故答案為:$\frac{2\sqrt{3}}{3}$.

點評 本題考查雙曲線的簡單性質的應用,點到直線的距離公式以及圓的方程的應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.設f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x<1}\\{2(x-1),x≥1}\end{array}\right.$若f(a)=f(a+1),則f($\frac{1}{a}$)=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)=2cosx+sinx的最大值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.對于給定的正整數(shù)k,若數(shù)列{an}滿足:an-k+an-k+1+…+an-1+an+1+…+an+k-1+an+k=2kan對任意正整數(shù)n(n>k)總成立,則稱數(shù)列{an}是“P(k)數(shù)列”.
(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;
(2)若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)在(-∞,+∞)單調遞減,且為奇函數(shù).若f(1)=-1,則滿足-1≤f(x-2)≤1的x的取值范圍是(  )
A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ae2x+(a-2)ex-x.
(1)討論f(x)的單調性;
(2)若f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;
(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內的人數(shù);
(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中Ai的橫、縱坐標分別為第i名工人上午的工作時間和加工的零件數(shù),點Bi的橫、縱坐標分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
(1)記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1,Q2,Q3中最大的是Q1
(2)記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1,p2,p3中最大的是p2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在正方體ABCD-A1B1C1D1中,給出下列結論:
(1)AC⊥B1D1           
(2)AC1⊥BC1
(3)AB1與BC1成角為60°
  (4)AB與A1C成角為45°
所有正確結論的序號(1)、(3).

查看答案和解析>>

同步練習冊答案