1.在正方體ABCD-A1B1C1D1中,給出下列結論:
(1)AC⊥B1D1           
(2)AC1⊥BC1
(3)AB1與BC1成角為60°
  (4)AB與A1C成角為45°
所有正確結論的序號(1)、(3).

分析 連接BD,則AC⊥BD,得出AC⊥B1D1,判斷(1)正確;
計算tan∠AC1B的值,判斷(2)錯誤;
連接A1C1,由△A1BC1是正三角形,判斷(3)正確;
連接A1D,求出AB與A1C成的角的正切值,判斷AB與A1C成的角不是45°,命題錯誤.

解答 解:如圖所示,
正方體ABCD-A1B1C1D1中,
對于(1),連接BD,則AC⊥BD,又BD∥B1D1,
∴AC⊥B1D1,∴(1)正確;
對于(2),在Rt△AC1B中,tan∠AC1B=$\frac{AB}{{BC}_{1}}$=$\frac{a}{\sqrt{2}a}$=$\frac{\sqrt{2}}{2}$,
∴AC1⊥BC1不成立,(2)錯誤;
對于(3),連接A1C1,則△A1BC1是正三角形,
∴AB1與BC1成角為60°,(3)正確;
對于(4),連接A1D,則∠A1CD是AB與A1C成的角,
∵tan∠A1CD=$\frac{\sqrt{2}a}{a}$=$\sqrt{2}$,∴AB與A1C成的角不是45°,(4)錯誤.
綜上,正確結論的序號是(1)、(3).
故答案為:(1)、(3).

點評 本題考查了空間中的平行與垂直關系的應用問題,是綜合題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點為A,以A為圓心,b為半徑作圓A,圓A與雙曲線C的一條漸近線交于M、N兩點.若∠MAN=60°,則C的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.一批產品的二等品率為0.02,從這批產品中每次隨機取一件,有放回地抽取100次.X表示抽到的二等品件數(shù),則DX=1.96.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知橢圓x2+my2=1的焦距為$\sqrt{3}$,則m=4或$\frac{4}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}滿足a1=$\frac{1}{5}$,且當n>1,n∈N*時,有an-1-an-4an-1•an=0.
(1)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$為等差數(shù)列,并求出數(shù)列{an}的通項公式;
(2)令bn=an•an+1,設數(shù)列{bn}的前n項和為Sn,證明:${S_n}<\frac{1}{20}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知圓C過點(1,0),(0,$\sqrt{3}$),(-3,0),則圓C的方程為x2+y2+2x-3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知多項式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=16,a5=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知a∈R,i是虛數(shù)單位,若z=a+$\sqrt{3}$i,z•$\overline{z}$=4,則a=( 。
A.1或-1B.$\sqrt{7}$或-$\sqrt{7}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.有5支彩筆(除顏色外無差別),顏色分別為紅、黃、藍、綠、紫.從這5支彩筆中任取2支不同顏色的彩筆,則取出的2支彩筆中含有紅色彩筆的概率為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習冊答案