已知函數(shù)f(x)=3+2cosx的圖象經(jīng)過(guò)點(diǎn)(
π
3
,b),則b=
 
考點(diǎn):余弦函數(shù)的圖象
專題:三角函數(shù)的求值
分析:根據(jù)三角函數(shù)的圖象和性質(zhì),直接代入即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)=3+2cosx的圖象經(jīng)過(guò)點(diǎn)(
π
3
,b),
∴b=f(
π
3
)=3+2cos
π
3
=3+2×
1
2
=3+1=4,
故答案為:4.
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x+a|+|x-1|,(a>0),且f(0)=2,
(1)求a的值及f[f(2)];
(2)判斷f(x)的奇偶性并證明;
(3)若g(x)=f(x)+x2,求g(x)的最小值,并求取最小值時(shí)x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:方程
x2
2m
-
y2
m-1
=1表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線
y2
5
-
x2
m
=1的離心率e∈(1,2).
若命題p、q滿足:p∧q為假,p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3-
1
2
(a+2)x2+(a+2)x-a-1,g(x)=
(exf(x))′
ex
,其中a>0.
(1)討論f(x)的單調(diào)性;
(2)設(shè)曲線y=g(x)在點(diǎn)(m,g(m)),(n,g(n))處的切線都過(guò)點(diǎn)(0,2).證明:當(dāng)m≠n時(shí),g′(m)≠g′(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算由曲線y=9-x2與直線y=x+7圍成的封閉區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足(
3
+3i)z=3i,則z的虛部=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=cos(2x-
π
6
)圖象的一條對(duì)稱軸是x=
12

②在同一坐標(biāo)系中,函數(shù)y=sinx與y=lgx的交點(diǎn)個(gè)數(shù)為3個(gè);
③將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個(gè)單位長(zhǎng)度可得到函數(shù)y=sin2x的圖象;
④存在實(shí)數(shù)x,使得等式sinx+cosx=
3
2
成立;
其中正確的命題為
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下面演繹推理中:“∵|sinx|≤1,又m=sinα,∴|m|≤1”,大前提是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z滿足|
.
z
-3-3i|-2|z|=0(i是虛數(shù)單位),則|z|的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案