4.已知在等比數(shù)列{an}中,a3+a6=6,a5+a8=9,則a7+a10等于( 。
A.5B.$\frac{25}{2}$C.6D.$\frac{27}{2}$

分析 由已知求出等比數(shù)列的公比的平方,再由${a}_{7}+{a}_{10}=({a}_{5}+{a}_{8}){q}^{2}$得答案.

解答 解:在等比數(shù)列{an}中,由a3+a6=6,a5+a8=9,
得$\frac{{a}_{5}+{a}_{8}}{{a}_{3}+{a}_{6}}={q}^{2}=\frac{3}{2}$,
則a7+a10 =$({a}_{5}+{a}_{8}){q}^{2}=9×(\frac{3}{2})^{2}=\frac{27}{2}$,
故選:D.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=($\frac{1}{2}$)x
(1)求當(dāng)x>0時(shí)f(x)的解析式;
(2)畫(huà)出函數(shù)f(x)在R上的圖象;
(3)寫(xiě)出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=x2-3ax+2a2
(1)若實(shí)數(shù)a=1時(shí),求不等式f(x)≤0的解集;
(2)求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=$\sqrt{2-{2^x}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1]B.[1,2)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S8=2S4,則$\frac{a_3}{a_1}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知i是虛數(shù)單位,x,y∈R,若x+2i=y-1+yi,則x+y=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知角α的終邊上的一點(diǎn)的坐標(biāo)為($\frac{3}{5},\frac{4}{5}$),則$\frac{cos2α}{1+sin2α}$=(  )
A.-$\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an},a1=3,an+1=-2an-3n-1.
(1)求證:數(shù)列{an+n}為等比數(shù)列;       
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)雙曲線(xiàn)$\frac{x^2}{m}+\frac{y^2}{n}=1\;(mn<0)$的一條漸近線(xiàn)為y=-2x,且一個(gè)焦點(diǎn)與拋物線(xiàn)$y=\frac{1}{4}{x^2}$的焦點(diǎn)相同,則此雙曲線(xiàn)的方程為(  )
A.$\frac{5}{4}{x^2}-5{y^2}=1$B.$5{y^2}-\frac{5}{4}{x^2}=1$C.$5{x^2}-\frac{5}{4}{y^2}=1$D.$\frac{5}{4}{y^2}-5{x^2}=1$

查看答案和解析>>

同步練習(xí)冊(cè)答案