分析 (1)根據(jù)數(shù)列的遞推關(guān)系結(jié)合等比數(shù)列的定義進行證明即可,
(2)根據(jù)等比數(shù)列的通項公式進行求解,
(3)根據(jù)分組求和法結(jié)合等比數(shù)列和等差數(shù)列的前n項和公式進行計算即可.
解答 解:(1)∵an+1=-2an-3n-1.
∴n+1+an+1=-2an-3n-1+n+1═-2an-2n=-2(an+1).
則$\frac{{a}_{n+1}+n+1}{{a}_{n}+n}$=-2,
則數(shù)列{an+n}為等比數(shù)列,公比q=-2;
(2)由(1)得數(shù)列{an+n}為等比數(shù)列,公比q=-2,首項為a1+1=3+1=4,
則an+n=4•(-2)n-1,
即an=4•(-2)n-1-n,
則數(shù)列{an}的通項公式為an=4•(-2)n-1-n;
(3)數(shù)列{an}的前n項和Sn=$\frac{4•[1-(-2)^{n}]}{1-(-2)}$-(1+2+…+n)=$\frac{4}{3}$-$\frac{4}{3}$•(-2)n-$\frac{n(n+1)}{2}$.
點評 本題主要考查等比數(shù)列的證明以及數(shù)列通項公式以及求和公式的應(yīng)用,利用分組求和法是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 6 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\frac{25}{2}$ | C. | 6 | D. | $\frac{27}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -15 | B. | $-\frac{1}{2}$ | C. | -11 | D. | $-\frac{31}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2-\frac{3}{5}i$ | B. | $2+\frac{3}{5}i$ | C. | 2+i | D. | 2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com