在平面四邊形ABCD中,順次的三條線段AC=CD=DA=10,AB=8,BC=6,求(BD+AC)•(BD-AC)的值.
考點(diǎn):余弦定理
專題:解三角形
分析:如圖所示,由AC=10,AB=8,BC=6,可得∠ABC=90°.設(shè)∠ACB=θ,則sinθ=
8
10
=
4
5
,cosθ=
3
5
.可得cos∠BCD=cos(θ+60°).利用余弦定理可得:BD2=DC2+BC2-2DC•BC•cos(θ+60°),再利用平方差公式可得(BD+AC)•(BD-AC)=BD2-AC2
解答: 解:如圖所示,
∵AC=10,AB=8,BC=6,62+82=102,
∴∠ABC=90°.
設(shè)∠ACB=θ,則sinθ=
8
10
=
4
5
cosθ=
3
5

∴cos∠BCD=cos(θ+60°)=cosθcos60°-sinθsin60°=
3
5
×
1
2
-
4
5
×
3
2
=
3-4
3
10

∴BD2=DC2+BC2-2DC•BC•cos(θ+60°)=102+62-2×10×6×
3-4
3
10
=100+48
3
,
∴(BD+AC)•(BD-AC)=BD2-AC2=100+48
3
-102=48
3
點(diǎn)評(píng):本題考查了直角三角形的邊角關(guān)系、兩角和差的余弦公式、余弦定理、平方差公式,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC的三邊為a,b,c,它的面積為
a2+b2-c2
4
,則tanC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在直角坐標(biāo)系xOy中,圓錐曲線C的參數(shù)方程為
x=2cosθ
y=
3
sinθ
(θ為參數(shù)),定點(diǎn)A(0,-
3
),F(xiàn)1、F2是圓錐曲線C的左、右焦點(diǎn).
(Ⅰ)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過(guò)點(diǎn)F1且平行于直線AF2的直線l的極坐標(biāo)方程;
(Ⅱ)設(shè)(Ⅰ)中直線l與圓錐曲線C交于M,N兩點(diǎn),求|F1M|•|F1N|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x3
2x-1
的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=x3(x-a),求函數(shù)f(x)在區(qū)間[1,2]上的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方體ABCD-A′B′C′D′的上,下底面都是邊長(zhǎng)為3的正方形,長(zhǎng)方體的高為4,如圖建立空間直角坐標(biāo)系,求下列直線的一個(gè)方向向量.
(1)AB′(2)BB′(3)B′D(4)CB′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)等差數(shù)列的總項(xiàng)數(shù)為奇數(shù)2n+1,且奇數(shù)項(xiàng)之和為77,偶數(shù)項(xiàng)之和為66,求中間項(xiàng)及總項(xiàng)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=sin2x的圖象
 
就可得到y(tǒng)=sin(2x+
π
3
)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定一個(gè)數(shù)列{an},在這個(gè)數(shù)列里,任取m(m≥3,m∈N*)項(xiàng),并且不改變它們?cè)跀?shù)列{an}中的先后次序,得到的數(shù)列{an}的一個(gè)m階子數(shù)列.
已知數(shù)列{an}的通項(xiàng)公式為an=
1
n+a
(n∈N*,a為常數(shù)),等差數(shù)列a2,a3,a6是數(shù)列{an}的一個(gè)3子階數(shù)列.
(1)求a的值;
(2)等差數(shù)列b1,b2,…,bm是{an}的一個(gè)m(m≥3,m∈N*)階子數(shù)列,且b1=
1
k
(k為常數(shù),k∈N*,k≥2),求證:m≤k+1
(3)等比數(shù)列c1,c2,…,cm是{an}的一個(gè)m(m≥3,m∈N*)階子數(shù)列,求證:c1+c1+…+cm≤2-
1
2m-1

查看答案和解析>>

同步練習(xí)冊(cè)答案