【題目】在各項(xiàng)為正的數(shù)列{an}中,數(shù)列的前n項(xiàng)和Sn滿足Sn= (an+ ),
(1)求a1 , a2 , a3;
(2)由(1)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的猜想.

【答案】
(1)解:易求得
(2)解:猜想

證明:①當(dāng)n=1時(shí), ,命題成立

②假設(shè)n=k時(shí), 成立,

則n=k+1時(shí), = = ,

所以, ,∴

即n=k+1時(shí),命題成立.

由①②知,n∈N*時(shí),


【解析】(1)由題設(shè)條件,分別令n=1,2,3,能夠求出a1,a2,a3.(2)由(1)猜想數(shù)列{an}的通項(xiàng)公式: ,檢驗(yàn)n=1時(shí)等式成立,假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解歸納推理的相關(guān)知識(shí),掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價(jià)格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中 是新樣式單車的月產(chǎn)量(單位:件),利潤總收益總成本.

(1)試將自行車廠的利潤元表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車廠的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖程序框圖輸出的結(jié)果為(
A.52
B.55
C.63
D.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知X的分布列為

X

﹣1

0

1

P

設(shè)y=2x+3,則E(Y)的值為(
A.
B.4
C.﹣1
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:

甲:82 81 79 78 95 88 93 84

乙:92 95 80 75 83 80 90 85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加較合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 存在兩個(gè)極值點(diǎn).
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)x1和x2分別是f(x)的兩個(gè)極值點(diǎn)且x1<x2 , 證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是平行四邊形, 平面,

, 的中點(diǎn).

(1)求證: 平面

(2)求證:平面平面;

(3)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“奶茶妹妹”對某時(shí)間段的奶茶銷售量及其價(jià)格進(jìn)行調(diào)查,統(tǒng)計(jì)出售價(jià)x元和銷售量y杯之間的一組數(shù)據(jù)如下表所示:

價(jià)格x

5

5.5

6.5

7

銷售量y

12

10

6

4

通過分析,發(fā)現(xiàn)銷售量y對奶茶的價(jià)格x具有線性相關(guān)關(guān)系.
(Ⅰ)求銷售量y對奶茶的價(jià)格x的回歸直線方程;
(Ⅱ)欲使銷售量為13杯,則價(jià)格應(yīng)定為多少?
注:在回歸直線y= 中, = =146.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱與四棱錐的組合體中,已知平面,四邊形是平行四邊形, , , , ,設(shè)是線段中點(diǎn).

(1)求證: 平面;

(2)證明:平面平面;

(3)求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案