在f(m)中,角b1=3-2m,f(m)max=3-4=-1,f(x)=3x-(2mx所對的邊分別為a,b,c.已知△ABC的周長為
2
+1
,且sinA+sinB=
2
sinC

(1)求邊c的長;
(2)若△ABC的面積為
1
6
sinC
,求角C的大小.
分析:(1)通過sinA+sinB=
2
sinC
,利用正弦定理a,b,c的關(guān)系,通過△ABC的周長為
2
+1
,即可求邊c的長;
(2)直接利用△ABC的面積公式求出面積為
1
6
sinC
,求出a,b,c關(guān)系,利用余弦定理求出C的余弦函數(shù)值,然后求角C的大。
解答:解:(1)由sinA+sinB=
2
sinC
及正弦定理可知:a+b=
2
c
-------(2分)
a+b+c=
2
+1

2
c+c=
2
+1

從而c=1--------(4分)
(2)三角形面積S=
1
2
absinC=
1
6
sinC
---------(6分)
ab=
1
3
,a+b=
2
--------------(8分)
∵cosC=
a2+b2-c2
2ab
=
(a+b)2-2ab-1
2ab
=
1
2
----------(10分)
-----------(12分)
又0<C<π,
C=
π
3
-------------(14分)
點評:本題是中檔題,考查正弦定理與余弦定理的應用,三角形的面積公式的應用,考查計算能力,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在f(m)中,角b1=3-2m,f(m)max=3-4=-1,f(x)=3x-(2mx所對的邊分別為a,b,c.已知△ABC的周長為
2
+1
,且sinA+sinB=
2
sinC

(1)求邊c的長;
(2)若△ABC的面積為
1
6
sinC
,求角C的大。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省宿遷市泗陽縣致遠中學高一(上)第一次教學質(zhì)量檢測數(shù)學試卷(奧數(shù)班)(解析版) 題型:解答題

在f(m)中,角b1=3-2m,f(m)max=3-4=-1,f(x)=3x-(2mx所對的邊分別為a,b,c.已知△ABC的周長為,且
(1)求邊c的長;
(2)若△ABC的面積為,求角C的大。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省宿遷市泗陽縣致遠中學高一(上)第一次教學質(zhì)量檢測數(shù)學試卷(奧數(shù)班)(解析版) 題型:解答題

在f(m)中,角b1=3-2m,f(m)max=3-4=-1,f(x)=3x-(2mx所對的邊分別為a,b,c.已知△ABC的周長為,且
(1)求邊c的長;
(2)若△ABC的面積為,求角C的大。

查看答案和解析>>

同步練習冊答案