已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若直線與軸正半軸、軸分別交于點,與橢圓分別交于點,各點均不重合,且滿足,. 當時,試證明直線過定點.過定點(1,0)

 

【答案】

(1)

(2)結合向量關系式,以及韋達定理,來分析直線的方程,進而得到定點坐標。

【解析】

試題分析:解:(Ⅰ)設橢圓的焦距為                        1分

由題意知,且

所以橢圓方程為.                                   4分

(Ⅱ)由題意設的方程為       5分

6分

同理由

,∴  。1)            7分

聯(lián)立,                          8分

只需    (2)

且有     (3)                     9分

把(3)代入(1)得且滿足(2),              10分

依題意,,故

從而的方程為,即直線過定點(1,0)                              12分

考點:橢圓方程,直線與橢圓的位置關系

點評:主要是考查了直線與橢圓的位置關系的運用,代數(shù)法來設而不求的解題思想是解析幾何的本質(zhì),屬于中檔題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的長軸長為4,離心率為
1
2
,F(xiàn)1,F(xiàn)2分別為其左右焦點.一動圓過點F2,且與直線x=-1相切.
(Ⅰ) (。┣髾E圓C1的方程;
(ⅱ)求動圓圓心軌跡C的方程;
(Ⅱ)在曲線C上有四個不同的點M,N,P,Q,滿足
MF2
NF2
共線,
PF2
QF2
共線,且
PF2
MF2
=0
,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,其左右焦點分別為F1、F2,A、B分別為橢圓的上、下頂點,如果四邊形AF1BF2為邊長為2的正方形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓的左、右頂點為M,N,過點M作x軸的垂線l,在l上任取一點P,連接PN交橢圓C于Q,探究
OP
OQ
是否為定值?如果是,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•河北區(qū)一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點F1(-1,0)斜率為1的直線交橢圓于P、Q兩點.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點M,使以橢圓的焦點為焦點且過M點的雙曲線E的實軸最長,求點M的坐標和此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省高二第二學期期中考試數(shù)學理試卷(解析版) 題型:解答題

已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.直線軸正半軸和軸分別交于點,與橢圓分別交于點,各點均不重合且滿足

(1)求橢圓的標準方程;

(2)若,試證明:直線過定點并求此定點.

 

查看答案和解析>>

同步練習冊答案