設(shè)數(shù)列{an}的前n項和為Sn,且an≠0(n∈N*),S1,S2,…,Sn,…,成等比數(shù)列,試問數(shù)列a2,a3,a4,…,an成等比數(shù)列嗎?證明你的結(jié)論.
考點:等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:因為S1,S2,…,Sn,…,成等比數(shù)列,設(shè)公比為q,則Sn=qSn-1,判斷
an
an-1
為常數(shù).
解答: 解:數(shù)列a2,a3,a4,…,an成等比數(shù)列;
證明:由已知S1,S2,…,Sn,…,成等比數(shù)列,設(shè)公比為q,則Sn=qSn-1,
an
an-1
=
Sn-S n-1
Sn-1-Sn-2
=
qSn-1-Sn-1
qSn-2-S n-2
=
Sn-1(q-1)
Sn-2(q-1)
=q,(n>2且n∈N);
所以S1,S2,…,Sn,…,成等比數(shù)列,數(shù)列a2,a3,a4,…,an成等比數(shù)列.
點評:本題考查了等比數(shù)列的判定;運用了等比數(shù)列的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x-1,(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)解關(guān)于x的方程f(x)=0;
(3)當(dāng)a≥1時,f(x)在[2,4]上的最小值為3,求f(x)在[2,4]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,側(cè)面PAD與底面ABCD互相垂直,且所有棱長均為2,AC∩BD=O.
(Ⅰ)若AB⊥AD,過點O作平面α與平面PBC平行,求所得截面的面積;
(Ⅱ)若BD=2,二面角A-PC-B的大小為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)-f(y)=f(
x-y
1-xy
);當(dāng)x∈(-1,0)時f(x)>0.若P=f(
1
5
)+f(
1
11
),Q=f(
1
2
),R=f(0);則P,Q,R的大小關(guān)系為( 。
A、P<Q<R
B、R<Q<P
C、R<P<Q
D、Q<P<R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)對任意的實數(shù)m,n都有:f(m+n)=f(m)+f(n)-1,且當(dāng)x>0時,有f(x)>1.
(1)求f(0);
(2)求證:f(x)在R上為增函數(shù);
(3)若f(1)=2,且關(guān)于x的不等式f(ax-2)+f(x-x2)<3對任意的x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
m
=(1,1-
3
sinA)
n
=(cosA,1),且
m
n
,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:a1=2,an+1=
3+4an
2+an
,證明:對?n∈N*,有2≤an<an+1<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知向量
a
,
b
c
滿足
a
+
b
+
c
=0,且|
a
|=5,|
b
|=7,|
c
|=10,求
a
b
的夾角的余弦值;
(2)已知|
a
|=2,|
b
|=3,
a
b
的夾角為60°,若
a
b
與λ
a
+
b
的夾角為銳角,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
-x+3a,x<0
ax,x≥0
(a>0
,且a≠1),在定義域R上滿足
f(x2)-f(x1)
x1-x2
>0
,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案