【題目】已知函數(shù),.

(Ⅰ)若,求實數(shù)取值的集合;

(Ⅱ)當(dāng)時,對任意,,令,證明.

【答案】12)見解析

【解析】

If′(x.(x0).對a分類討論即可得出單調(diào)性極值與最值.進(jìn)而得出a的取值集合;II)當(dāng)a0時,fx)=lnx,則,由(I)可知:lnx10,(x0).根據(jù)0x1x2,可得1,ln1,即可證明.由(I)可知:lnxx1,(x1).同理可證明:

(Ⅰ)由已知,有.

當(dāng)時,,與條件矛盾;

當(dāng)時,若,則,單調(diào)遞減;

,則單調(diào)遞增.

上有最小值.

由題意,∴.

..

當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減.

上有最大值..

.

,∴,

綜上,當(dāng)時,實數(shù)取值的集合為.

(Ⅱ)當(dāng)時,,則.

由(Ⅰ),可知.

(當(dāng)且僅當(dāng)時取等號).

,∴.,∴

由①式可得當(dāng)時,有.

,∴.

.

綜上所述,有,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C和橢圓1有公共的焦點,且離心率為

1)求雙曲線C的方程;

2)經(jīng)過點M2,1)作直線l交雙曲線CA、B兩點,且MAB的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C=2px經(jīng)過點(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍;

設(shè)O為原點,,求證為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCDA1B1C1D1是長方體,OB1D1的中點,直線A1C交平面AB1D1于點M,則下列結(jié)論正確是( )

A.A,MO三點共線B.AM,O,A1不共面

C.AM,C,O不共面D.B,B1,O,M共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線的焦點,過點的直線與拋物線相交于不同的兩點,拋物線兩點處的切線分別是,且相交于點.設(shè),則的值是___(結(jié)果用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)平臺從購買該平臺某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學(xué)時數(shù),客戶性別等進(jìn)行統(tǒng)計,整理得到如表:

學(xué)時數(shù)

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根據(jù)上表估計男性客戶購買該課程學(xué)時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結(jié)果保留小數(shù)點后兩位);

(2)從這100位客戶中,對購買該課程學(xué)時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再從這7人中隨機(jī)抽取2人,求這2人購買的學(xué)時數(shù)都不低于15的概率.

(3)將購買該課程達(dá)到25學(xué)時及以上者視為“十分愛好該課程者”,25學(xué)時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛好該課程者”與性別有關(guān)?

非十分愛好該課程者

十分愛好該課程者

合計

男性

女性

合計

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)打算將如圖的一直三角形區(qū)域進(jìn)行改建,在三邊上各選一點連成等邊三角形,在其內(nèi)建造文化景觀.已知,,則區(qū)域內(nèi)面積(單位:)的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若,求實數(shù)取值的集合;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題

①已知為橢圓上任意一點,,是橢圓的兩個焦點,則的周長是8;

②已知是雙曲線上任意一點,是雙曲線的右焦點,則;

③已知直線過拋物線的焦點,且交于,,兩點,則;

④橢圓具有這樣的光學(xué)性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點,今有一個水平放置的橢圓形臺球盤,點,是它的焦點,長軸長為,焦距為,若靜放在點的小球(小球的半徑忽略不計)從點沿直線出發(fā)則經(jīng)橢圓壁反射后第一次回到點時,小球經(jīng)過的路程恰好是

其中正確命題的序號為__(請將所有正確命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案